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Toward a Live Stepper for Typed Expressions with Holes

CYRUS OMAR, Carnegie Mellon University
IAN VOYSEY, Carnegie Mellon University
MATTHEW A. HAMMER, University of Colorado Boulder

To understand the dynamic behavior of an expression, programmers can use a “stepper” to interactively
simplify the expression according to the dynamic semantics of the programming language. �e problem
that motivates this work is that a standard dynamic semantics assigns meaning only to complete, well-typed
expressions, but there are situations where a programmer might want to explore the dynamic behavior
of an expression well before it is complete. �is paper proposes the development of a dynamic semantics
for incomplete expressions, which we take to mean expressions with holes. Holes indicate portions of the
expression that have yet to be �lled in, or, following our recent work (Omar et al. 2017a), that have a local
type inconsistency that has yet to be resolved. �e result would be a program editor where the programmer
has access to the stepper at all times, not just when the program is in a complete state, and where evaluation
does not stop immediately at the hole, but rather proceeds as far as possible past the hole.

Even this would not be entirely satisfying when engaging in live programming, where editing and evaluation
are interleaved, because naı̈vely, the programmer would need to restart the stepper a�er each edit. To address
this problem, this paper further proposes a mechanism that tracks the dynamic environment around each
hole as well as its evaluation status. �is allows for the speci�cation of a live stepper, i.e. a stepper where
evaluation can continue where it le� o� even a�er holes are �lled in, because the current state of the stepper
can be “patched” to accurately re�ect each edit that was made.

�is paper reports early conceptual progress in these directions. Many details have yet to be considered. We
hope to discuss both the human aspects and the formal aspects of the design with the workshop participants.
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Broadly speaking, live programming environments are those that granularly interleave editing
and evaluation (Burckhardt et al. 2013; McDirmid 2007; Tanimoto 1990, 2013). In the words of
Burckhardt et al. (2013), live programming environments “promise to narrow the temporal and
perceptive gap between program development and code execution”. Examples of live programming
environments include lab notebook environments, e.g. the popular IPython/Jupyter (Pérez and
Granger 2007), which allow the programmer to interactively edit and evaluate program fragments
organized into a sequence of cells (an extension of the read-eval-print loop (REPL)); spreadsheets;
live graphics programming environments like SuperGlue (McDirmid 2007), Sketch-n-Sketch (Chugh
et al. 2016) and the tools demonstrated by Bret Victor in his lectures (Victor 2012); the TouchDevelop
live UI framework (Burckhardt et al. 2013); live mobile application development systems like Flu�er
(Flu�er Developers 2017); and live visual and auditory data�ow languages (Burne� et al. 1998), to
name a few prominent examples.

�e problem that has motivated much of our recent work is that most programming environments,
live programming environments included, provide feedback via various editor services only once
the program being edited is syntactically well-formed and, when relevant, well-typed. �is leaves a
“temporal and perceptive gap”, because programmers sometimes leave a program malformed or
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ill-typed for extended periods of time, e.g. as they think about what to enter at the cursor, or as
they work on a di�erent part of the program.

In view of this general problem, we recently developed a structure editor calculus called Hazelnut
where every edit state consists of a well-formed and statically meaningful, i.e. well-typed, incom-
plete expression, which we take to mean an expression with holes (Omar et al. 2017a). �is calculus
addressed fundamental questions relevant to editor services that operate statically, but there was
no solution in that paper to the problems faced by editor services that also require knowledge
of the dynamic meaning of an incomplete program, as would be relevant to a live programming
environment. For example, consider a stepper (a.k.a. a stepwise debugger), like that available to
Haskell programmers in the GHCi system (GHC Team 2017) and other systems (Marlow et al. 2007;
Wallace et al. 2001), to OCaml programmers with recent work on ocamli by Whitington and Ridge
(2017) and to Standard ML programmers (Tolmach and Appel 1995). A stepper requires that the
expression being stepped be assigned dynamic meaning according to a small-step operational se-
mantics (Harper 2016; Plotkin 2004), but no such semantics was de�ned for incomplete expressions
that arise when using Hazelnut, or any of these other systems. De�ning such a semantics was le�
as future work in the Hazelnut paper, and in a subsequent “vision paper” (Omar et al. 2017b). �e
purpose of this paper is to sketch out our progress toward a theoretically well-grounded solution.

Scenario 1: Initial Stepping Scenario 2: Edit and Resume

fun f (x ,y) = 3 + x ∗ y÷#u
[x/x,y/y] + 2 ∗ x

J(x+1)/uK
−−−−−−−−→ fun f (x ,y) = 3 + x ∗ y÷(x + 1) + 2 ∗ x

1 f (2, 3) 7−→ 3 + 2 ∗ 3÷#u
[2/x,3/y] + 2 ∗ 2

J(x+1)/uK
−−−−−−−−→ f (2, 3) 7−→ 3 + 2 ∗ 3÷(2 + 1) + 2 ∗ 2

2 7−→ 3 + 6÷#u
[2/x,3/y] + 2 ∗ 2

J(x+1)/uK
−−−−−−−−→ 7−→ 3 + 6÷(2 + 1) + 2 ∗ 2

3 7−→ 3 + 6÷ u
[2/x,3/y] + 2 ∗ 2

J(x+1)/uK
−−−−−−−−→ 7−→ 3 + 6÷3 + 2 ∗ 2

4 7−→ 3 + 2 + 2 ∗ 2
5 7−→ 5 + 2 ∗ 2

6 7−→ 3 + 6÷ u
[2/x,3/y] + 4

J(x+1)/uK
−−−−−−−−→7→∗ 7−→ 5 + 4

7 7−→ 9

Fig. 1. An example demonstrating (1) stepping of an incomplete program; (2) support for “edit-and-resume”
when transitioning between edit states related by an edit that can be understood as hole instantiation.

Scenario 1: Initial Stepping. Consider the de�nition of the incomplete function f on the top
le� of Fig. 1. �is function is incomplete because a hole, notated #, appears in its body. In our
previous work, holes were unadorned (Omar et al. 2017a).1 For the purposes of this paper, however,
it is helpful to adorn each hole with a unique name, u. In addition, each hole is adorned with
an environment, indicated by a subscript. We will return to consider environments shortly. Our
notation here is for the purposes of exposition. In practice, the hole name might be indicated in
some other way, e.g. using di�erent colors for di�erent visible holes, and the environment would
be maintained internally, rather than shown explicitly to the programmer.

�e cell below the de�nition of f applies f to 2 and 3 (because the programmer intends to explore
the behavior of f for this choice of input.) Normally, the fact that f is incomplete would prevent
the programmer from being able to step this function application – the programmer would �rst
need to �ll in the hole in f with a well-typed term before the stepper could consult the language’s
operational semantics to proceed with stepping. �is is despite the fact that according to a static
1In our previous work, we notated holes LM, but # is simpler for our present purposes.
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semantics for incomplete expressions following that described in our previous work, f can still be
assigned type (num, num) → num and f (2, 3) can therefore be assigned type num (Omar et al. 2017a).
Our interest here is in eliminating this restriction, so that we can step the expression f (2, 3) even
before completing the de�nition of f . We can do so as shown on Lines 1-3,6 (le�) of Fig. 1. Let us
consider each step in turn.

�e �rst step (Line 1) operates in essentially the usual way: we substitute 2 for x and 3 for y in
the body of f . �e only novelty is that substitution proceeds also into the environment associated
with each hole. An environment is an n-ary substitution mapping variables, x , to expressions, e ,
notated in the standard way as [e1/x1, ..., en/xn]. When stepping starts, the environment associated
with each hole is simply the identity environment, here [x/x ,y/y], indicating that no substitutions
have yet occurred around the hole. Once we apply f , the environment for the hole u becomes
[2/x , 3/y][x/x ,y/y] = [2/x , 3/y]. �ere are two main reasons to maintain an environment around
each hole. One is so that the programmer or an editor service in the live programming environment
can select a hole in the evaluation trace and inspect the current environment there, to aid in
determining how to �ll the hole. �e second reason has to do with edit-and-resume functionality,
which we will return to in Scenario 2 below.

Assuming the usual associativity and le�-to-right evaluation order for arithmetic expressions,
the second step of evaluation (Line 2) proceeds to reduce the subexpression 2 ∗ 3 to 6 in exactly the
usual way.

Now we arrive at a critical point in evaluation. �e next step, following the usual evaluation
order, would divide 6 by the evaluated divisor, except that the divisor is absent – there is a hole, u,
in its place.

One approach here would be to throw our hands up and raise an exception at this point, following
the common programmer practice of raising an exception named something like Unimplemented
at points in a program that remain to be wri�en. �is is the approach that the hole system in the
Glasgow Haskell Compiler takes (Peyton Jones et al. 2016).

�is approach is unsatisfying, however, because there is computation that remains to be done
in other parts of the program. We’d like to step past the hole and evaluate as much as we can
elsewhere (at least, in a pure functional se�ing.) We do so by way of the third step (Line 3), which
simply marks the hole as having been evaluated by coloring it in, . We will return to why tracking
the evaluation status of each hole instance is helpful in Scenario 2 below.

Because the hole appears as a divisor, we cannot reduce the sub-expression 6÷ u
[2/x,3/y] any

further. �at, in turn, also prevents us from reducing the sub-expression 3+6÷ u
[2/x,3/y] any further.

However, we can move on as shown on Line 6 to the sub-expression 2 ∗ 2, which reduces to 4. At
this point, there are no further steps that can be taken. �is seems to violate the classical notion of
Progress, which is one half of the classical Type Safety theorem (Harper 2016; Milner 1978), in that
we claimed that the expression being stepped is well-typed, but evaluation can neither proceed,
nor has it produced a value. However, this violation is not due to missing rules in our semantics –
there is simply nothing more we can do. We conjecture that this theoretical problem can therefore
be solved by (1) positively characterizing indeterminate evaluation states, i.e. those where a hole
blocks progress at all locations within the expression, and (2) de�ning a notion of Indeterminate
Progress that allows for evaluation to stop at an indeterminate evaluation state, in addition to a
value. �is “�x” is in some ways analagous to the �x needed when introducing run-time errors into
a language (Harper 2016). A careful evaluation of this conjecture using the Agda proof assistant
(Norell 2009) is ongoing work.

Before moving on to Scenario 2, there is one more important issue to consider. In the example in
Fig. 1, there were only expression holes, but in the full calculus, there can also be type holes. An
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observation made in our previous work was that the machinery for reasoning about type holes
coincides with that for reasoning about unknown types in gradual type theory (Siek and Taha
2006). Our conjecture is therefore that the machinery needed to step gradually typed programs
will also allow us to step incomplete programs that have type holes. In particular, there will be a
need for run-time type checking based on cast insertion, so as to handle well-typed but erroneous
programs like (3 : #)(4).
Scenario 2: Edit and Resume. Suppose now that the programmer decides that the hole u should
be �lled by the expression x + 1, and, through some sequence of edit actions (considered formally
in our prior work), arrives at the new de�nition of f shown on the top right of Figure 1. �is
function f is now complete – no holes remain – so the live programming environment could restart
evaluation of f (2, 3) and proceed in the usual way by taking the steps shown on the right of Fig. 1,
ultimately arriving on Line 7 at the �nal result of 9.

�e problem here is that when live programming, it might not be desirable to restart stepping from
the beginning on each such edit, both for reasons of convenience and performance. A programmer
particularly interested in some intermediate evaluation state, e.g. any of Lines 1, 2, 3 or 6 on the
le� of Fig. 1, would have to engage with the stepper to return to the corresponding edit state on
the right of Fig. 1 a�er the edit, and incur the dynamic cost of doing so.

A be�er design would be one where if the editor has already computed an evaluation state
from the version of f with a hole, and two edit states di�er only up to hole instantiation, wri�en
J(x + 1)/uK, then it can take advantage of an important commutativity property that we aim to
prove about our dynamics: that hole instantiation commutes with evaluation.

Hole instantiation, Je/uKe ′ is similar to substitution, except that it acts on hole(s) named u in Ûe ′.
At each such hole, the corresponding substitution is applied to Ûe . For example, on Line 1, we replace
the hole u on the le� with [2/x , 3/y](x + 1) = 2 + 1 on the right to arrive at the corresponding
evaluation state. �e same can be done on Line 2, allowing us to skip Line 1 entirely. On Line
3, hole instantiation operates a bit di�erently because the hole u has been evaluated – we now
instantiate the hole with the evaluated value of [2/x , 3/y](x + 1), which is 3.

More generally, our conjecture is that it su�ces to start from any indeterminate evaluation state
previously computed and perform hole instantiation on it. A�er doing so, evaluation can resume.
�e end result is guaranteed to coincide with that of evaluating the new version of f from scratch.
�is might require some number of additional steps, as indicated by the 7→∗ connective on Line 6.

�is relates to ongoing research into combining general-purpose incremental computation (IC)
with static analysis (Hammer et al. 2016). Currently, IC research focuses on input changes (Chen
et al. 2011, 2014; Fisher et al. 2016; Hammer and Acar 2008; Hammer et al. 2009; Hammer and
Dun�eld 2016; Hammer et al. 2015, 2014, 2011), whereas the mechanism proposed here considers
incremental program changes.

�e notion of holes being associated with unique names and substitutions, and the notion of
hole instantiation just described, is borrowed directly from work in contextual modal type theory
(CMTT) (Nanevski et al. 2008). Hole names correspond to metavariables and holes themselves to
closures. CMTT is, in turn, the Curry-Howard interpretation of contextual modal logic. �is gives
us con�dence that our approach is not ad hoc, but rather rooted in the established logical tradition.
Next Steps. �e preliminary work outlined above, with its roots in gradual type theory and CMTT,
suggests a theoretical foundation for moving forward. However, there remain some major missing
pieces, on both the theoretical and implementation sides.

First, CMTT does not come equipped with a dynamic semantics that supports evaluation of
terms with free metavariables, which is precisely what we require (see Scenario 1, above). As such,
we need to formally develop the notion of an indeterminate evaluation state, de�ne a dynamics
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that can handle free metavariables, and formally state and prove our Indeterminate Progress and
commutativity conjectures. We also need to carefully consider how non-termination a�ects the
commutativity property. Our work so far has focused on pure, functional languages, but it is
important also to consider these issues for impure functional languages, e.g. ML-like languages
with reference cells and external e�ects. It is likely that the commutativity property will be weaker
in this se�ing.

Second, CMTT’s closures nicely handle empty expression holes, but non-empty holes, type holes,
and other problems that we plan to internalize with our statics need to be considered carefully.
Non-empty holes can likely be understood as a simple variation on empty holes. In the previous
section, we discussed the relationship between type holes and gradual typing. Work in gradual
typing appears to provide one solution to the problem of evaluating terms with type holes (by
inserting run-time casts (Siek and Taha 2006).) �is suggests that a comprehensive dynamics
for incomplete programs, i.e. one that assigns dynamic meaning to every statically meaningful
incomplete program, will require developing a gradual contextual modal type theory (GCMTT).

We also need to develop a semantics that characterizes when two edit states are related by hole
instantiation. �ere are two ways to approach this: as a function of the syntactic di�erence between
the two edit states; and 2) as a function of an edit action that was actually performed.

�ere are several more practical design questions that we aim to explore a�er developing the
initial foundations just described. First is of course that we need a useful baseline stepper for
Hazelnut, with support for skipping tedious intermediate steps and displaying large terms in a
readable manner. Recent work by Whitington and Ridge (2017) on ocamli has a similar goal,
and we plan to follow many of the same techniques. We also plan to look into work by Perera
et al. (2012) on using a (slightly di�erent) notion of holes to hide portions of the program that are
irrelevant to selected portions of the output. We are calling our ongoing design Hazelnut Live.
Ultimately, this will be merged into the full-scale design that we call Hazel (Omar et al. 2017b).

It would be useful for the programmer to be able to select a hole that appears in an indeterminate
state and 1) be taken to its original location; 2) be able to inspect the value of a subexpression under
the cursor in the environment of the selected hole (rather than just its type.) �is corresponds to
“watches” and “stack inspection” in standard debuggers.

IPython/Jupyter (Pérez and Granger 2007) supports a feature whereby numeric variable(s) in
cells can be marked as being “interactive”, which causes the user interface to display a slider. As
the slider value changes, the new value of the cell is recomputed. It would be useful to be able to
use the mechanisms just described to incrementalize parts of this recomputation automatically.

Ultimately, we believe that this work will provide a foundation for live programming environ-
ments for statically typed functional programming languages that behave far less rigidly than one
might expect, because holes in both expressions and types do not prevent us from dynamically
exploring the program being wri�en.
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