
Modularizing Reasoning about AI Capabilities
via Abstract Dijkstra Monads
Cyrus Omar (University of Michigan, USA) <comar@umich.edu>
Patrick Ferris (University of Cambridge, UK) <pf341@cam.ac.uk>
Anil Madhavapeddy (University of Cambridge, UK) <avsm2@cam.ac.uk>

1 Overview

Figure 1: Unguarded Agentic AI

Emerging agentic AI systems have the potential to substantially ac-
celerate progress on critical scientific and societal problems, but they
also present substantial privacy, security, and safety challenges be-
cause they execute commands autonomously or semi-autonomously
in environments where they have access to sensitive data and effects
(Figure 1) [16]. For example, an AI agent tasked with enacting envi-
ronmental interventions that qualify for biodiversity credits [24]may
exhibit harmful behavior (or even act “maliciously” if, e.g., attacked
by an unscrupulous actor) by executing sequences of commands that:

1. modify sensor data to minimize the extent of habitat loss [15];

2. leak location sightings of vulnerable species to poachers [9]; or

3. enact an intervention that causal modeling would suggest may not be likely to satisfy desirable con-
straints, e.g. water rights agreements or standards for equitable economic impact.

Formal methods are a key approach to enforcing mathematically rigorous safeguards that limit the
ability of agentic AIs to cause these kinds of harms. In particular, we envision enforcing AI capability
safety policies that impose strict constraints of various kinds:

• CapabilityAccess Constraints, which limit access to sensitive data [23], e.g. a policy couldwithhold
access to a write capability for locations where sensor data is stored, addressing Issue 1.

• Information Flow Constraints, which limit information flows that leak sensitive data outside of an
allowable perimeter [22], addressing Issue 2.

• Causal Constraints, which require proof using detailed causal modeling, informed by an accurate
world model, that the impact of an intervention can be shown, with high probability, to have the
intended impact and to avoid undesirable impacts [13], addressing Issue 3.

Specifying AI capability safety policies able to enforce these kinds of constraints in practical settings
will necessarily be a large-scale, collaborative effort. In particular, it will require (1) employing a wide
variety of approaches to specification and proof (see [6] for examples); (2) developing large-scale world
models encompassing organizational access control and information flowmodels, legal models, andmore
general causal models of the world; and (3) developing robust AI safety policies and specifications that
are likely to minimize the risk of catastrophic harm from future AI agents.

The proposed talk will outline the vision for a recently originated research project aiming to build a
formally verified prototype of a foundational “operating system” for safeguarded AI, called Bastion, that
grounds these activities within programming language theory, namely by combining dependent type
theory (as a practical general-purpose theory of computational structures and proofs [18, 3]), Dijkstra
monads (as a flexible formalism for reasoning about an AI agent’s computational effects [1, 10]), and



Figure 2: The Bastion Operating System for safeguarded AI

abstract types (for modularizing reasoning [4, 12, 11] to individual components that can be separately
developed byvarious stakeholders, includingAI safety researchers, formalmethods experts, organizations
of various scales, and governments seeking to develop actionable, specific policy).

The proposed Bastion system architecture, diagrammed in Figure 2, consists of two main components:

1. The bastion is a computational wiki consisting of code written in a dependently typed language—
we will use F⋆ due to its mature support for reasoning about effects via Dijkstra monads [1, 10, 14],
though other languages like Coq and Lean can also encode Dijkstra monads [19]—interleaved with
natural language narrative and diagrams. In the bastion, stakeholders collaboratively construct:

• an AI capability safety policy that determines (1) which baseline capabilities, from a collabo-
ratively developed capability library parameterized by data from access and information flow
control systems, and (2) which further task-specific capability restrictions, formulated by an-
tagonistic AIs trained to enforce the principle of least privilege, that a client AI agent can use
when performing a given task; and

• AI capability safety proofs, i.e. proofs that the capabilities allowed by the policy have desirable
safety properties, informed by a collaboratively developedworld model.

2. The policy enforcer is a formally verified typechecker [20] and run-time system that communicates
the policy specified in the bastion to an AI agent and checks that its proposed commands, expressed
as simple monadic programs, conform to this policy through both a typechecking phase and, when
necessary, run-time instrumentation enabled by configuring a secure execution environment [21].

2 Bastion by Example
To further flesh out the Bastion architecture, let us develop a simpleAI capability safety policy that enforces
capability access constraints limiting an AI agent’s directory access (e.g. Issue 1 above).



2.1 Modular AI Capability Safety Policies
The central construct in Bastion is a capability, c, which is an F⋆ module implementing a capability signa-
ture, C, which is an F⋆ module signature that specifies an abstract monad, i.e. a monad without a public
implementation, C.Cmd a. A monad is an algebraic structure (made famous by Haskell) that can be used
to encode an sequence of effectful commands that finally return a value of type a.

For example, CapDataAccess below is a parameterized capability signature because it specifies an ab-
stract monad with the two monad operations, return and bind, and commands readfile and writefile.
module type CapDataAccess(readonly : list(dir), writable : list(dir))
(* abstract monad *) (* only allows access to given directories *)
type Cmd a val readfile : path -> Cmd string
val return : a -> Cmd a (* only allows writes to writable dirs *)
val bind : Cmd a -> val writefile : path -> string -> Cmd ()
(a -> Cmd b) -> Cmd b

A capability safety policy, π : (A, T ) → (c : C), is a mapping from an agent identifier, a : A, and task,
t : T , to a capability signature paired with an implementation, which we write c : C. For example, our
policy might look up the agent in a formally verified access control system like Cedar [5] to determine a
baseline set of read-only and writable directories. Because the task will typically be specified in natural
language, we envision the use of antagonist AIs trained to implement the principle of least privilege by
generating further task-specific restrictions of the baseline capability’s parameters. Symbolically, we can
express this simple policy as follows (the implementation, c, is discussed below):
fun (a, t) -> c : CapDataAccess(setminus (acl a) (antagonist (acl a) t))

By using set minus, we know (can prove) that the antagonist AI can only restrict the agent’s access further
beyond the baseline specified by the access control list, acl a.

The AI agent must express its commands as values of this abstract monad type (assisted by “do no-
tation” so this looks essentially like a standard imperative program). The policy enforcer is a formally
verified type checker and command executor. In particular, the key metatheoretic properties that we will
establish formally are type safety, which ensure no undefined behavior, capability safety, which ensures that
there is no backdoor to access effects other than those provided explicitly by the policy-sanctioned capabil-
ity [7, 12, 11], and parametricity, which ensure that all values of the abstract monad type are compositions
of commands defined in the capability, even though the underlying implementation will be in terms of a
more permissive monad (e.g. the environment’s base I/O monad). In some cases, a capability will ask
the policy enforcer to correctly configure a secure execution environment, e.g. to implement run-time
monitoring or instrumentation [2].
2.2 Modular AI Capability Safety Proofs
Parametricity modularizes reasoning about the safety properties of a capability implementation. Stake-
holders, assisted by theorem proving AIs [17], can mechanically prove properties of interest by instanti-
ating the abstract monad with a suitable Dijkstra monad, which consists of a command monad (typically
the environment’s base IO monad) indexed by a specification monad. For example, we can prove that an
implementation of the above capability signature correctly restricst access to the given directories using
predicate transformers (not shown, but see [1, 10]). This indexing structure makes Dijkstra monads very
flexible to a variety of reasoning techniques—they can be used for reasoning about side channel attacks,
concurrency, information flow, and probabilistic programs (which could in the future be used for proofs
about causal constraints).

In addition to modular proofs about capabilities, a capability signature in general could defer to the
AI agent to discharge proof obligations using a dependently typed signature, e.g. one that asks the agent
to provide causal proofs justifying a particular course of action before it is executed. This will require a
robust world model, which can also be expressed as a collaboratively developed collection of dependently
typed structures in the Bastion.

Capabilities can be composed using monad transformers [8]. If the constituent capabilities are separa-
ble, proofs will easily compose. In other cases, capabilities might interact non-conservatively.



3 Talk Logistics
The proposed talk will provide an overview of the problem space, related work, and the proposed archi-
tecture (20 minutes), then seek discussion (10 minutes) from HOPE participants who are familiar with
the reasoning challenges that will come up and potential solutions from the literature that the project team
should consider. We are very open to potential collaborations that might arise.

References
[1] Danel Ahman et al. “Dijkstra monads for free”. In: Proceedings of the 44th ACM SIGPLAN Sympo-

sium on Principles of Programming Languages. POPL ’17. Paris, France: Association for Computing
Machinery, 2017, pp. 515–529. isbn: 9781450346603. doi: 10.1145/3009837.3009878. url: https:
//doi.org/10.1145/3009837.3009878.

[2] Cezar-Constantin Andrici et al. “Securing Verified IO Programs Against Unverified Code in F*”. In:
Proceedings of ACMPrinciples of Programming Languages 8.POPL (2024), pp. 2226–2259. doi: 10.1145/
3632916. url: https://doi.org/10.1145/3632916.

[3] Ana Bove, Peter Dybjer, and Ulf Norell. “A Brief Overview of Agda – A Functional Language with
Dependent Types”. In: Theorem Proving in Higher Order Logics. Ed. by Stefan Berghofer et al. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2009, pp. 73–78. isbn: 978-3-642-03359-9.

[4] PatrickCousot. “Types as abstract interpretations”. In:Proceedings of the 24thACMSIGPLAN-SIGACT
Symposium on Principles of Programming Languages. POPL ’97. Paris, France: Association for Comput-
ing Machinery, 1997, pp. 316–331. isbn: 0897918533. doi: 10.1145/263699.263744. url: https:
//doi.org/10.1145/263699.263744.

[5] Joseph Cutler et al. “Cedar: A New Language for Expressive, Fast, Safe, and Analyzable Authoriza-
tion (Extended Version)”. In: arXiv preprint arXiv:2403.04651 (2024).

[6] David Dalrymple et al. “Towards Guaranteed Safe AI: A Framework for Ensuring Robust and Reli-
able AI Systems”. In: arXiv preprint arXiv:2405.06624 (2024).

[7] Henry M Levy. Capability-based computer systems. Digital Press, 2014.
[8] Sheng Liang, Paul Hudak, and Mark Jones. “Monad transformers and modular interpreters”. In:

Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages.
POPL ’95. San Francisco, California, USA: Association for ComputingMachinery, 1995, pp. 333–343.
isbn: 0897916921. doi: 10.1145/199448.199528. url: https://doi.org/10.1145/199448.199528.

[9] David Lindenmayer and Ben Scheele. “Do not publish”. In: Science 356.6340 (2017), pp. 800–801.
doi: 10.1126/science.aan1362. eprint: https://www.science.org/doi/pdf/10.1126/science.
aan1362. url: https://www.science.org/doi/abs/10.1126/science.aan1362.

[10] Kenji Maillard et al. “Dijkstra monads for all”. In: Proc. ACM Program. Lang. 3.ICFP (July 2019). doi:
10.1145/3341708. url: https://doi.org/10.1145/3341708.

[11] Darya Melicher et al. “A capability-based module system for authority control”. In: 31st European
Conference on Object-Oriented Programming (ECOOP 2017). Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik. 2017.

[12] Darya Melicher et al. “Bounded Abstract Effects”. In: ACM Trans. Program. Lang. Syst. 44.1 (2022),
5:1–5:48. doi: 10.1145/3492427. url: https://doi.org/10.1145/3492427.

[13] Maya L. Petersen and Mark J. van der Laan. “Causal Models and Learning from Data: Integrating
Causal Modeling and Statistical Estimation”. In: Epidemiology 25.3 (May 2014), pp. 418–426. issn:
1044-3983. doi: 10 . 1097 / ede . 0000000000000078. url: http : / / dx . doi . org / 10 . 1097 / EDE .
0000000000000078.

https://doi.org/10.1145/3009837.3009878
https://doi.org/10.1145/3009837.3009878
https://doi.org/10.1145/3009837.3009878
https://doi.org/10.1145/3632916
https://doi.org/10.1145/3632916
https://doi.org/10.1145/3632916
https://doi.org/10.1145/263699.263744
https://doi.org/10.1145/263699.263744
https://doi.org/10.1145/263699.263744
https://doi.org/10.1145/199448.199528
https://doi.org/10.1145/199448.199528
https://doi.org/10.1126/science.aan1362
https://www.science.org/doi/pdf/10.1126/science.aan1362
https://www.science.org/doi/pdf/10.1126/science.aan1362
https://www.science.org/doi/abs/10.1126/science.aan1362
https://doi.org/10.1145/3341708
https://doi.org/10.1145/3341708
https://doi.org/10.1145/3492427
https://doi.org/10.1145/3492427
https://doi.org/10.1097/ede.0000000000000078
http://dx.doi.org/10.1097/EDE.0000000000000078
http://dx.doi.org/10.1097/EDE.0000000000000078


[14] Aseem Rastogi et al. Programming and Proving with Indexed Effects. Tech. rep. Microsoft Research,
2020.

[15] Peter Richards et al. “Are Brazil’s deforesters avoidingdetection?” In:Conservation Letters 10.4 (2017),
pp. 470–476. doi: 10.1111/conl.12310.

[16] Yonadav Shavit et al. “Practices for governing agentic AI systems”. In: Research Paper, OpenAI, De-
cember (2023).

[17] Peiyang Song, Kaiyu Yang, and Anima Anandkumar. Towards Large Language Models as Copilots for
Theorem Proving in Lean. 2024. arXiv: 2404.12534 [cs.AI].

[18] Nikhil Swamy et al. “Dependent types and multi-monadic effects in F*”. In: Proceedings of the 43rd
annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. 2016, pp. 256–
270.

[19] Nikhil Swamy et al. “Verifying higher-order programs with the Dijkstra monad”. In: Proceedings
of the 34th ACM SIGPLAN Conference on Programming Language Design and Implementation. PLDI 13.
ACM, June 2013. doi: 10.1145/2491956.2491978. url: http://dx.doi.org/10.1145/2491956.
2491978.

[20] YongKiamTan, Scott Owens, and RamanaKumar. “A verified type system for CakeML”. In: Proceed-
ings of the 27th Symposium on the Implementation and Application of Functional Programming Languages.
IFL ’15. Koblenz, Germany: Association for Computing Machinery, 2015. isbn: 9781450342735. doi:
10.1145/2897336.2897344. url: https://doi.org/10.1145/2897336.2897344.

[21] Zahra Tarkhani and Anil Madhavapeddy. “Information Flow Tracking for Heterogeneous Compart-
mentalized Software”. In: Proceedings of the 26th International Symposium on Research in Attacks, In-
trusions and Defenses. RAID ’23. Hong Kong, China: Association for Computing Machinery, 2023,
pp. 564–579. isbn: 9798400707650. doi: 10.1145/3607199.3607235. url: https://doi.org/10.
1145/3607199.3607235.

[22] E. Tromer and M. Krohn. “Noninterference for a Practical DIFC-Based Operating System”. In: 2009
30th IEEE Symposium on Security and Privacy (SP). Los Alamitos, CA, USA: IEEE Computer Society,
May 2009, pp. 61–76. doi: 10.1109/SP.2009.23. url: https://doi.ieeecomputersociety.org/10.
1109/SP.2009.23.

[23] Robert N.M. Watson et al. “CHERI: A Hybrid Capability-System Architecture for Scalable Software
Compartmentalization”. In: IEEE Symposium on Security and Privacy. 2015, pp. 20–37. doi: 10.1109/
SP.2015.9.

[24] Sven Wunder et al. Biodiversity credits: learning lessons from other approaches to incentivize conservation.
Feb. 2024. doi: 10.31219/osf.io/qgwfc. url: osf.io/qgwfc.

https://doi.org/10.1111/conl.12310
https://arxiv.org/abs/2404.12534
https://doi.org/10.1145/2491956.2491978
http://dx.doi.org/10.1145/2491956.2491978
http://dx.doi.org/10.1145/2491956.2491978
https://doi.org/10.1145/2897336.2897344
https://doi.org/10.1145/2897336.2897344
https://doi.org/10.1145/3607199.3607235
https://doi.org/10.1145/3607199.3607235
https://doi.org/10.1145/3607199.3607235
https://doi.org/10.1109/SP.2009.23
https://doi.ieeecomputersociety.org/10.1109/SP.2009.23
https://doi.ieeecomputersociety.org/10.1109/SP.2009.23
https://doi.org/10.1109/SP.2015.9
https://doi.org/10.1109/SP.2015.9
https://doi.org/10.31219/osf.io/qgwfc
osf.io/qgwfc

	Overview
	Bastion by Example
	Modular AI Capability Safety Policies
	Modular AI Capability Safety Proofs

	Talk Logistics

