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1 Overview

Figure 1: Unguarded Agentic AI

Emerging agentic AI systems have the potential to substantially ac-
celerate progress on critical scientific and societal problems, but they
also present substantial privacy, security, and safety challenges be-
cause they execute commands autonomously or semi-autonomously
in environments where they have access to sensitive data and effects
(Figure 1) [16]. For example, an AI agent tasked with enacting envi-
ronmental interventions that qualify for biodiversity credits [24]may
exhibit harmful behavior (or even act “maliciously” if, e.g., attacked
by an unscrupulous actor) by executing sequences of commands that:

1. modify sensor data to minimize the extent of habitat loss [15];

2. leak location sightings of vulnerable species to poachers [9]; or

3. enact an intervention that causal modeling would suggest may not be likely to satisfy desirable con-
straints, e.g. water rights agreements or standards for equitable economic impact.

Formal methods are a key approach to enforcing mathematically rigorous safeguards that limit the
ability of agentic AIs to cause these kinds of harms. In particular, we envision enforcing AI capability
safety policies that impose strict constraints of various kinds:

• CapabilityAccess Constraints, which limit access to sensitive data [23], e.g. a policy couldwithhold
access to a write capability for locations where sensor data is stored, addressing Issue 1.

• Information Flow Constraints, which limit information flows that leak sensitive data outside of an
allowable perimeter [22], addressing Issue 2.

• Causal Constraints, which require proof using detailed causal modeling, informed by an accurate
world model, that the impact of an intervention can be shown, with high probability, to have the
intended impact and to avoid undesirable impacts [13], addressing Issue 3.

Specifying AI capability safety policies able to enforce these kinds of constraints in practical settings
will necessarily be a large-scale, collaborative effort. In particular, it will require (1) employing a wide
variety of approaches to specification and proof (see [6] for examples); (2) developing large-scale world
models encompassing organizational access control and information flowmodels, legal models, andmore
general causal models of the world; and (3) developing robust AI safety policies and specifications that
are likely to minimize the risk of catastrophic harm from future AI agents.

The proposed talk will outline the vision for a recently originated research project aiming to build a
formally verified prototype of a foundational “operating system” for safeguarded AI, called Bastion, that
grounds these activities within programming language theory, namely by combining dependent type
theory (as a practical general-purpose theory of computational structures and proofs [18, 3]), Dijkstra
monads (as a flexible formalism for reasoning about an AI agent’s computational effects [1, 10]), and



Figure 2: The Bastion Operating System for safeguarded AI

abstract types (for modularizing reasoning [4, 12, 11] to individual components that can be separately
developed byvarious stakeholders, includingAI safety researchers, formalmethods experts, organizations
of various scales, and governments seeking to develop actionable, specific policy).

The proposed Bastion system architecture, diagrammed in Figure 2, consists of two main components:

1. The bastion is a computational wiki consisting of code written in a dependently typed language—
we will use F⋆ due to its mature support for reasoning about effects via Dijkstra monads [1, 10, 14],
though other languages like Coq and Lean can also encode Dijkstra monads [19]—interleaved with
natural language narrative and diagrams. In the bastion, stakeholders collaboratively construct:

• an AI capability safety policy that determines (1) which baseline capabilities, from a collabo-
ratively developed capability library parameterized by data from access and information flow
control systems, and (2) which further task-specific capability restrictions, formulated by an-
tagonistic AIs trained to enforce the principle of least privilege, that a client AI agent can use
when performing a given task; and

• AI capability safety proofs, i.e. proofs that the capabilities allowed by the policy have desirable
safety properties, informed by a collaboratively developedworld model.

2. The policy enforcer is a formally verified typechecker [20] and run-time system that communicates
the policy specified in the bastion to an AI agent and checks that its proposed commands, expressed
as simple monadic programs, conform to this policy through both a typechecking phase and, when
necessary, run-time instrumentation enabled by configuring a secure execution environment [21].

2 Bastion by Example
To further flesh out the Bastion architecture, let us develop a simpleAI capability safety policy that enforces
capability access constraints limiting an AI agent’s directory access (e.g. Issue 1 above).



2.1 Modular AI Capability Safety Policies
The central construct in Bastion is a capability, c, which is an F⋆ module implementing a capability signa-
ture, C, which is an F⋆ module signature that specifies an abstract monad, i.e. a monad without a public
implementation, C.Cmd a. A monad is an algebraic structure (made famous by Haskell) that can be used
to encode an sequence of effectful commands that finally return a value of type a.

For example, CapDataAccess below is a parameterized capability signature because it specifies an ab-
stract monad with the two monad operations, return and bind, and commands readfile and writefile.
module type CapDataAccess(readonly : list(dir), writable : list(dir))
(* abstract monad *) (* only allows access to given directories *)
type Cmd a val readfile : path -> Cmd string
val return : a -> Cmd a (* only allows writes to writable dirs *)
val bind : Cmd a -> val writefile : path -> string -> Cmd ()
(a -> Cmd b) -> Cmd b

A capability safety policy, π : (A, T ) → (c : C), is a mapping from an agent identifier, a : A, and task,
t : T , to a capability signature paired with an implementation, which we write c : C. For example, our
policy might look up the agent in a formally verified access control system like Cedar [5] to determine a
baseline set of read-only and writable directories. Because the task will typically be specified in natural
language, we envision the use of antagonist AIs trained to implement the principle of least privilege by
generating further task-specific restrictions of the baseline capability’s parameters. Symbolically, we can
express this simple policy as follows (the implementation, c, is discussed below):
fun (a, t) -> c : CapDataAccess(setminus (acl a) (antagonist (acl a) t))

By using set minus, we know (can prove) that the antagonist AI can only restrict the agent’s access further
beyond the baseline specified by the access control list, acl a.

The AI agent must express its commands as values of this abstract monad type (assisted by “do no-
tation” so this looks essentially like a standard imperative program). The policy enforcer is a formally
verified type checker and command executor. In particular, the key metatheoretic properties that we will
establish formally are type safety, which ensure no undefined behavior, capability safety, which ensures that
there is no backdoor to access effects other than those provided explicitly by the policy-sanctioned capabil-
ity [7, 12, 11], and parametricity, which ensure that all values of the abstract monad type are compositions
of commands defined in the capability, even though the underlying implementation will be in terms of a
more permissive monad (e.g. the environment’s base I/O monad). In some cases, a capability will ask
the policy enforcer to correctly configure a secure execution environment, e.g. to implement run-time
monitoring or instrumentation [2].
2.2 Modular AI Capability Safety Proofs
Parametricity modularizes reasoning about the safety properties of a capability implementation. Stake-
holders, assisted by theorem proving AIs [17], can mechanically prove properties of interest by instanti-
ating the abstract monad with a suitable Dijkstra monad, which consists of a command monad (typically
the environment’s base IO monad) indexed by a specification monad. For example, we can prove that an
implementation of the above capability signature correctly restricst access to the given directories using
predicate transformers (not shown, but see [1, 10]). This indexing structure makes Dijkstra monads very
flexible to a variety of reasoning techniques—they can be used for reasoning about side channel attacks,
concurrency, information flow, and probabilistic programs (which could in the future be used for proofs
about causal constraints).

In addition to modular proofs about capabilities, a capability signature in general could defer to the
AI agent to discharge proof obligations using a dependently typed signature, e.g. one that asks the agent
to provide causal proofs justifying a particular course of action before it is executed. This will require a
robust world model, which can also be expressed as a collaboratively developed collection of dependently
typed structures in the Bastion.

Capabilities can be composed using monad transformers [8]. If the constituent capabilities are separa-
ble, proofs will easily compose. In other cases, capabilities might interact non-conservatively.



3 Talk Logistics
The proposed talk will provide an overview of the problem space, related work, and the proposed archi-
tecture (20 minutes), then seek discussion (10 minutes) from HOPE participants who are familiar with
the reasoning challenges that will come up and potential solutions from the literature that the project team
should consider. We are very open to potential collaborations that might arise.
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