

Hazelnut: A Bidirectionally Typed
Structure Editor Calculus

Cyrus Omar
Ian Voysey
Michael Hilton

Jonathan Aldrich

Matthew Hammer

POPL 2017

Carnegie Mellon University

Carnegie Mellon University
Oregon State University

Carnegie Mellon University

University of Colorado Boulder

Q: What is it that program editors reason about?

2

Q: What is it that textual program editors reason about?

3

fun summary_stats(m : matrix) =
 { mean = stats.mean(m, ColumnWise),
 std = stats.std(m,
 median =

syntactically malformed program text

Syntactic error recovery heuristics

4

syntactically malformed program text term with holes→

[Kats et al., OOPSLA 2009; Amorim et al., SLE 2016]

fun summary_stats(m : matrix) =
 { mean = stats.mean(m, ColumnWise),
 std = stats.std(m,),▢
 median = }▢

Syntactic structure editors

5

fun summary_stats(m : matrix) =
 { mean = stats.mean(m, ColumnWise),
 std = stats.std(m,), ▢
 median = }▢

syntactically malformed program text → term with holes

[Teitelbaum and Reps, Comm. ACM 1981; many others since]

6

fun summary_stats(m : matrix) =
 { mean = stats.mean(m, ColumnWise),
 std = stats.std(m,), ▢
 median = }▢

Q: How to reason statically about terms with holes?

7

fun summary_stats(m : matrix) =
 { mean = stats.mean(m, ColumnWise),
 std = stats.std(m,), ▢
 median = }▢

Q: How to reason statically about terms with holes?

What type is synthesized for the function as a whole?

8

fun summary_stats(m : matrix) =
 { mean = stats.mean(m, ColumnWise),
 std = stats.std(m,), ▢
 median = }▢

Q: How to reason statically about terms with holes?

What type is synthesized for the function as a whole?
matrix →
 { mean : vec,
 std : vec,
 median : }▢

9

Q: How to reason statically about terms with type errors?

What type is synthesized for the function as a whole?

fun summary_stats(m : matrix) =
 { mean = stats.mean(m, ColumnWise),
 std = stats.std(m, “oops”),
 median = }▢

10

Q: How to reason statically about terms with type errors?

What type is synthesized for the function as a whole?

fun summary_stats(m : matrix) =
 { mean = stats.mean(m, ColumnWise),
 std = stats.std(m, “oops”),
 median = }▢

Reify type inconsistencies as non-empty holes!

11

Q: How to reason statically about terms with type errors?

What type is synthesized for the function as a whole?
matrix →
 { mean : vec,
 std : vec,
 median : }▢

fun summary_stats(m : matrix) =
 { mean = stats.mean(m, ColumnWise),
 std = stats.std(m, “oops”),
 median = }▢

Reify type inconsistencies as non-empty holes!

12

Contribution 1: A static semantics for lambda terms with holes

13

Contribution 1: A static semantics for lambda terms with holes

14

Contribution 1: A static semantics for lambda terms with holes

...

15

Contribution 1: A static semantics for lambda terms with holes

... ...

16

Contribution 1: A static semantics for lambda terms with holes

... ...

17

Contribution 1: A static semantics for lambda terms with holes

... ...

coincides with gradual typing
[Siek and Taha, 2006]

18

Contribution 2: A typed edit action semantics

19

Live Demo

See http://hazelgrove.org/

20

Contribution 2: A typed edit action semantics

21

Contribution 2: A typed edit action semantics

22

Contribution 2: A typed edit action semantics

23

Contribution 2: A typed edit action semantics

24

Contribution 2: A typed edit action semantics

25

Contribution 2: A typed edit action semantics

26

Contribution 2: A typed edit action semantics

27

Metatheorem: Sensibility

Every edit action leaves the edit state well-typed.

28

Metatheorem: Reachability

The cursor can reach any position in the program.

29

Metatheorem: Constructability

Any well-typed expression can be constructed using edit actions.

30

Summary: Hazelnut

● A static semantics for terms with holes and type inconsistencies.

● An typed action semantics that maintains sensibility invariant.
● HZ: A reference implementation written in OCaml React + js_of_ocaml.

● A rich metatheory that establishes the correctness of Hazelnut.
● Mechanized using the Agda proof assistant.
● Guides the definition of an extension (sum types – see paper!)

31

From Hazelnut to Hazel

32

From Hazelnut to Hazel

TODO: scale up POPL17

33

From Hazelnut to Hazel

TODO: type-specific projections
(based on my work at ICSE 2012, ECOOP 2014)

34

From Hazelnut to Hazel

TODO: a dynamic semantics for incomplete
programs (very live programming)

35

From Hazelnut to Hazel

TODO: an action suggestion semantics

36

From Hazelnut to Hazel

TODO: a statistical model of edit actions

37

From Hazelnut to Hazel

TODO: library-defined derived actions

38

From Hazelnut to Hazel

39

From Hazelnut to Hazel

See http://www.hazelgrove.org/.

Thanks!

http://www.hazelgrove.org/

