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Q: What is it that program editors reason about?

2



  

Q: What is it that textual program editors reason about?
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fun summary_stats(m : matrix) = 
  { mean   = stats.mean(m, ColumnWise), 
    std    = stats.std(m, 
    median = 

syntactically malformed program text



  

Syntactic error recovery heuristics
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syntactically malformed program text  term with holes→

[Kats et al., OOPSLA 2009; Amorim et al., SLE 2016]

fun summary_stats(m : matrix) = 
  { mean   = stats.mean(m, ColumnWise), 
    std    = stats.std(m, ),▢  
    median =  }▢



  

Syntactic structure editors
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fun summary_stats(m : matrix) = 
  { mean   = stats.mean(m, ColumnWise), 
    std    = stats.std(m, ), ▢
    median =  }▢

syntactically malformed program text → term with holes 

[Teitelbaum and Reps, Comm. ACM 1981; many others since]
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fun summary_stats(m : matrix) = 
  { mean   = stats.mean(m, ColumnWise), 
    std    = stats.std(m, ), ▢
    median =  }▢

Q: How to reason statically about terms with holes?



  
7

fun summary_stats(m : matrix) = 
  { mean   = stats.mean(m, ColumnWise), 
    std    = stats.std(m, ), ▢
    median =  }▢

Q: How to reason statically about terms with holes?

What type is synthesized for the function as a whole?
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fun summary_stats(m : matrix) = 
  { mean   = stats.mean(m, ColumnWise), 
    std    = stats.std(m, ), ▢
    median =  }▢

Q: How to reason statically about terms with holes?

What type is synthesized for the function as a whole? 
matrix → 
  { mean   : vec, 
    std    : vec,
    median :  }▢
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Q: How to reason statically about terms with type errors?

What type is synthesized for the function as a whole? 

fun summary_stats(m : matrix) = 
  { mean   = stats.mean(m, ColumnWise), 
    std    = stats.std(m, “oops”), 
    median =  }▢



  
10

Q: How to reason statically about terms with type errors?

What type is synthesized for the function as a whole? 

fun summary_stats(m : matrix) = 
  { mean   = stats.mean(m, ColumnWise), 
    std    = stats.std(m, “oops”), 
    median =  }▢

Reify type inconsistencies as non-empty holes!
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Q: How to reason statically about terms with type errors?

What type is synthesized for the function as a whole? 
matrix → 
  { mean   : vec, 
    std    : vec,
    median :  }▢

fun summary_stats(m : matrix) = 
  { mean   = stats.mean(m, ColumnWise), 
    std    = stats.std(m, “oops”), 
    median =  }▢

Reify type inconsistencies as non-empty holes!
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Contribution 1: A static semantics for lambda terms with holes
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Contribution 1: A static semantics for lambda terms with holes
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Contribution 1: A static semantics for lambda terms with holes

...



  
15

Contribution 1: A static semantics for lambda terms with holes

... ...
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Contribution 1: A static semantics for lambda terms with holes

... ...
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Contribution 1: A static semantics for lambda terms with holes

... ...

coincides with gradual typing
[Siek and Taha, 2006]
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Contribution 2: A typed edit action semantics
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Live Demo

See http://hazelgrove.org/
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Contribution 2: A typed edit action semantics
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Contribution 2: A typed edit action semantics
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Contribution 2: A typed edit action semantics
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Contribution 2: A typed edit action semantics
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Contribution 2: A typed edit action semantics
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Contribution 2: A typed edit action semantics
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Contribution 2: A typed edit action semantics
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Metatheorem: Sensibility

Every edit action leaves the edit state well-typed.
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Metatheorem: Reachability

The cursor can reach any position in the program.
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Metatheorem: Constructability

Any well-typed expression can be constructed using edit actions.
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Summary: Hazelnut

● A static semantics for terms with holes and type inconsistencies.

● An typed action semantics that maintains sensibility invariant.
● HZ: A reference implementation written in OCaml React + js_of_ocaml.

● A rich metatheory that establishes the correctness of Hazelnut.
● Mechanized using the Agda proof assistant.
● Guides the definition of an extension (sum types – see paper!)
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From Hazelnut to Hazel
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From Hazelnut to Hazel

TODO: scale up POPL17
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From Hazelnut to Hazel

TODO: type-specific projections
(based on my work at ICSE 2012, ECOOP 2014)
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From Hazelnut to Hazel

TODO: a dynamic semantics for incomplete
programs (very live programming)
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From Hazelnut to Hazel

TODO: an action suggestion semantics
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From Hazelnut to Hazel

TODO: a statistical model of edit actions
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From Hazelnut to Hazel

TODO: library-defined derived actions
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From Hazelnut to Hazel



  
39

From Hazelnut to Hazel

See http://www.hazelgrove.org/. 

Thanks!

http://www.hazelgrove.org/

