An Integrative Human-Centered Architecture
for Interactive Programming Assistants

David Moon
University of Michigan
Ann Arbor, MI, USA

dmoo@umich.edu

Andrew Blinn
University of Michigan
Ann Arbor, MI, USA

blinnand @umich.edu

Abstract—Programming has become a collaboration between
human programmers, who drive intent, and interactive assistants
that suggest contextually relevant editor actions. There has
been considerable work on suggestion synthesis strategies—from
semantic autocomplete to modern program synthesis, repair, and
machine learning research. This diversity of contextually viable
strategies creates a need for an integrative, human-centered
perspective on the problem of programming assistant design that
(1) confronts the problem of integrating a variety of synthesis
strategies, fed by shared semantic analyses capable of operating
on program sketches, and (2) centers the needs of the human
programmer: comprehending, comparing, ranking, and filtering
suggestions generated by various synthesizers, and in some cases
participating in a synthesizer’s search by supplying additional
expressions of intent. This paper contributes a conceptual archi-
tecture and API to guide programming assistant designers as they
confront these integration and human-centered design challenges.
We then instantiate this architecture with two prototype end-to-
end assistant designs, both developed for the Hazel programming
environment, that emphasize understudied design aspects, namely
continuity, explainability, human-in-the-loop synthesis, and the
integration of multiple analyses with multiple synthesis strategies.

I. INTRODUCTION

A programming assistant is an editor service that analyzes
the editor state (consisting primarily of a program sketch,
perhaps with additional data such as history) to present edit
action suggestions to a human user and help the user select an
action consistent with their broader intent [1-3]. Programming
assistants promise to improve programmer productivity by
automating tedious programming tasks. They may also im-
prove software quality by helping programmers avoid mistakes
and, in some cases, guarantee that the suggestions satisfy
programmer-specified correctness constraints. Moreover, they
reduce knowledge gaps by surfacing structures and idioms that
a programmer might not have otherwise discovered [4-6].

Given these benefits, it is unsurprising that simple assistants
like code completion and “hotfix” systems are ubiquitous in
modern programming environments, competing in frequency
with manual editor actions like code insertion and deletion
[7]. There has in turn been substantial research interest [8]
in techniques that can synthesize better suggestions, including
program synthesis using types [9], examples [10], program
sketches [11], edit history [12], demonstrations [13], and log-
ical constraints [14] to generate “hole completions™ [15, 16].

Eric Griffis
University of Michigan
Ann Arbor, MI, USA

egriffis@umich.edu

Cyrus Omar
University of Michigan
Ann Arbor, MI, USA
comar@umich.edu

Github Copilot [17] is one of several recent efforts focused on
synthesizing long-form completions by using machine learning
techniques that learn idioms from a large corpus of example
programs [18-20].

While much of this research has focused on the underlying
synthesis algorithms, there has recently been a renaissance of
human-centered approaches that remind us that ultimately, the
human programmer remains the driver of intent and the arbiter
of correctness. Consequently, the interface through which the
human communicates intent to the assistant and considers its
suggestions must be designed with cognitive costs in mind. For
example, many of these synthesis techniques are capable of
substantial associative leaps, which carry with them concerns
about explainability and the costs of validating correctness. In
addition, code search spaces can become large, which can lead
either to lengthy synthesis delays or too many suggestions.
Concerns like these have led to work on interpretable synthesis
[21] and interactive search space exploration [22].

We seek to organize this often-overwhelming diversity of
efforts by developing an integrative architecture for program-
ming assistant designers that confronts the problem of integrat-
ing a wide variety of synthesis techniques (and requisite pro-
gram analyses) while centering the needs of the human user.
Each component of this architecture is the subject of ongoing
research, as is the overall design problem. We demonstrate that
our architecture can serve to characterize and situate some ex-
isting assistant designs. We then describe our ongoing work on
two end-to-end prototypes intended to emphasize understudied
design criteria, namely continuity of service, integration of
multiple shared analyses with multiple synthesis strategies,
explainability, independent semantic ranking techniques, and
interfaces for integrating the human into an incremental search.

Our intention is not to make empirical claims about the
specific design choices made in these prototypes. Indeed, there
is much work to be done before successors to these designs
can claim to improve overall programmer productivity. Rather
we present these prototypes as illustrations of the proposed
integrative architecture, which we hope will help organize and
provide vocabulary for the assistant design community, and to
draw attention to understudied but important design criteria
that we hope will draw more interest from the community.

978-1-6654-4214-5/22/$31.00 ©2022 IEEE

EDITOR ACTION

ASSISTANT ACTION

EDITOR STATE

ASSISTANT STATE ¢

SCORERS

ERROR DELTA HOLE FILLER TYPES
b 4 v o - .)
i I i g i I
COMPLEXITY ' j REFACTORER N VARIABLES
1 P initi 4 pe,
with explanations
i I T /// i I
H IDIOMATICITY . SMYTH LIVE VALUES
ASSISTANT o |)

..etc

EDITOR HISTORY

LANG. SERVER

Analyzers, e.g

SYNTHESIZERS

€

|

Fig. 1. Integrative human-centered assistant architecture diagram detailing suggestion dataflow and the user interaction loop

II. ARCHITECTURAL OVERVIEW

Essentially all program editors support a basic interaction
loop whereby a human user triggers editor actions, resulting in
an updated editor state [23]. The editor state is presented to the
user alongside various editor services that provide additional
feedback, e.g. syntax highlighting and type feedback [24].
This feedback requires performing language-aware analyses.
Because the same analyses might be relevant to multiple
services and across multiple editors, analyzers are typically
collected behind a shared language server interface [25].

Analyses made available by a language server also feed the
programming assistant (Fig. 1.Assistant). An important con-
sideration, particularly relevant to programming assistants, is
that these servers must be able to cope with program sketches,
i.e. editor states that are not yet syntactically valid or complete,
or where there are static errors [23,26]. When unable to do
so, this can lead to gaps in service. Consequently, there has
been much effort put into heuristics such as error-recovery and
incremental parsing [25,27,28] or in automatic hole insertion
[23,26]. In the context of a programming assistant, it is exactly
these incomplete states where assistance is most necessary, so
gaps in the availability of the analyzers offered by the language
server must be avoided whenever possible.

Turning now to the assistant itself, we see a dataflow be-
ginning with a collection of Synthesizers which each generate
sets of edit action suggestions with accompanying explanatory
metadata, as expressed in these notional type definitions:

(EditAction, Explanation)
LanguageServer -> Set (Suggestion)

type Suggestion =

type Synthesizer =
For example, the standard Java code completion Synthesizer
generates field name suggestions by requesting the type of the
target expression from the language server, and variations of

that synthesizer also incorporate edit history [29], examples
[6], or abbreviations [30].

Generated suggestions are collated and assessed by our third
layer, the Scorers, resulting in reports used by the Ranker and
Presenter to convey suggestions to the user:
type
type
type
type

Scorer = Suggestion -> Score
ScoreReport = Map (Scorer, Score)
RankedSuggestion = (Suggestion, RankExplanation)
Ranker = Map (Suggestion, ScoreReport)

—-> List (RankedSuggestion)

A variety of ranking and sorting methods have been previously
considered [4] including alphabetically, by-type, by-relevance,
by prevalence in a corpus, and via logical grouping. Ex-
planation of suggestions is under-researched in programming
assistants, but has been recognized as increasingly important
[31] and explainable Al is a burgeoning topic [32].

Finally, the ranked suggestions are presented to the user
together with various affordances, i.e. assistant actions, for
updating the assistant state, e.g. to sort, filter, or interact
with the components just described. While interaction with
suggestions is often simply selection from a menu, more
involved interaction models include active code completion
via palettes [33], interactive example augmentation [22], and
work on the Read-Eval-Synthesize-Loop [34], which presents
a Read-Eval-Print-Loop-inspired interaction model for driving
human-in-the-loop synthesis.

III. HAZEL ASSISTANT

The Hazel programming environment [23] provides a com-
pelling setting for explorations in programming assistant de-
sign. It is a structure editor with a formalized editor action
semantics, and it avoids the language server gap problem de-
scribed above, providing continual static and dynamic analyses
even for program sketches [35].

isSpoon : Bool =

let numSpoons : Int = =] Insert a variable
let makeForks : Int - + More granular type
let toFloat : Int » F C1U€ =

let toInt : Float > I false

numSpoons « Float # Int Apply a function to the current form

+ One fewer error
Less specific type
+ Syntax partially conserved

(i tToFloat n
(i tToFl at)
il

case)

LBy

end

(makeForks numSpoons) : 0 WRA

D (makeForks)

let (4, foo) : | = (., true) in
1:: 1sS§oon H B Join pattern and expression types
numSpoons : - .
let makegorks j(Int, Bool) + More specific than expression type
+ More specific than pattern type
let toFloat : I (/], Bool)
let toInt : Flo
i 7o (Int,)
@ B B
let | = (42, true) in

2] &y Insert a literal

?, ?) LT .

tet (0r) o E in c
222 < Float # Int 7]
222. NV

Convert a literal to another type

+ One fewer error
+ Syntax mostly conserved

: Float

(toFloat)
ilo
(toFloat |)

Fig. 2. The Hazel Assistant: (2.A): Completion menu for an expression hole of type Bool. The assistant is not limited to expression completion; it can also
use type inference to refine type annotations (2.B) and patterns (2.C). (2.D): Wrapper synthesizer being used for code repair. Both the first and last options
result in fewer errors, but the last (selected) is ranked down as it results in a less specific type. (2.E): Converter synthesizer targeting numeric type errors

The Hazel Assistant shown in Fig. 2 is a working prototype
of a completion and repair assistant for Hazel, serving as a
simple end-to-end instantiation of our architecture.

The prototype integrates various Synthesizers that focus
on using cursor-local syntactic and static Analyzers to sug-
gest local code transformations. As we are operating on a
program sketch—a program with explicit syntactic holes—this
task characterization covers both code completion (when the
term is an empty hole) and code repair (where the term
has a non-empty hole around it, indicating a type error).
For type-correct terms, the assistant still provide suggestions
for possible transformations, providing lightweight ambient
awareness of implementation alternatives.

o Type Analyzer: Determines the expected (analytic) type
and current (synthetic) type at the cursor

o Binding Analyzer: Collects bound variables and uses

o Syntactic Context Analyzer: Manages an ascending list
of enclosing syntactic forms, rooted at the cursor term
and including its parent and ancestors

These Analyzers are queried by various Synthesizers:

o Inserter Synthesizers: These implement basic type-
aware code completion, ignoring cursor term content and
suggesting a wholesale replacement. For example, at a
hole with expected type Bool, the Literal Synthesizer
suggests true and false (Fig. 2.A)

« Wrapper Synthesizers: These take into account the type
of the current term to suggest wrapping it within a
larger term. For example the application synthesizer may
suggest wrapping a term by applying a function which
consumes that term’s type and produces the expected type

o Converter Synthesizers: These suggest conversions be-
tween types, e.g2. Float/Int conversions (Fig. 2.E)

Each synthesizer emits a set of suggestions, each equipped
with an explanation related to the synthesizer that suggested
it. Suggestions are pooled together and fed to the Scorers,
who rate each suggestion, possibly with further Language
Server consultation. The Hazel Assistant currently employs
the following Scorers:

o Error Delta Scorer: Determines the integer change in
the number of static errors (Fig. 2.D-E)

o Idiomaticity Scorer: Performs a heuristic assessment of
the idiomaticity of the result, based on a comparison
against a fixed list of non-idiomatic syntactic patterns
such as using a lambda directly in an application

o Type Specificity Scorer: Compares the current and re-
sulting types. This is positive if the resulting type is more
specific, such as moving from ? (unknown) to Int

« Syntax Conservation Scorer: Compares the string rep-
resentation of the current term and its suggested replace-
ment via Levenshtein distance

Each suggestion’s scores are collected in a ScoreReport and
passed to the Ranker, which uses a set score weighting to
sort the set of suggestions. The Presenter surfaces the ranked
suggestions as a scrollable list. On hover, a suggestion’s ex-
planation is shown as well as an explanation for the ranking in
terms of the individual scores. Selecting a suggestion triggers
the corresponding EditAction and closes the interaction loop.
Interactions with the Presenter, e.g. moving up and down, are
Assistant Actions and update only the Assistant State.

let add :
assert®((add @ 0) ==
assert*((add 0 1) ==

in

1
e ,
. 2

A.0>1>1

(A1 . (A X2 . {Y
X2

Ax1.{Ax2.{x2}} in

Int > (Int > Int) =
0)
1)

let add : Int > (Int
assert®((add 0 0) ==
assert((add @ 1) =
assert((add 1 0) =
assert®((add 2 2) =

let add : =
asserts((add 0 0) ==
assert®((add 0 1) ==

Int > (Int > Int) =
0)
1)

let add
asserts((add 0 0) ==
assert®((add 0 1) ==

: Int > (Int > Int) =
0)
1)

=x2x1add
00 0 A
11 0 A
3 let add : Int > (Int
assert*((add 0 0

)

let add : Int > (Int asserts((add 0 1)
)

)

assert’((add 0 0) ==
assert”((add 0 1) ==

> Int) =
2)
1)

asserts((add 1 0

4 assert*((add 2 2
let add : Int > (Int
assert*((add 0 0)
assert*((add 0 1)
)

)

Over-specialized solution? Try some more assertions:

let add : Int > (Int > Int) = Ax1.{Ax2.{x2}} in
assert’((add @ 0) == 0)
assert’((add 0 1) == 1)
assert*((add 1 0) == 1)
assert*((add 2 2) == 4)

asserts((add 1 0
assert*((add 2 2

> 1nt) = Axt.{a2. ([N let add : Int > (Int > Int) =
0) case x1 Ax1.{
1) |o= ax2.{
1) | y1 = case x1
4) let y1 = y1 - 1 in | 0 = x2
| y1 =

case x2 let y1 = y1 - 1 in

| o= ((add y1) (1 + x2))

| y1 = end

let y1 = y1 - 1 in }
6

in
assert’((add 0 o

> Int) = Ax1.{Ax2.{fC])
assert’((add 0 1)
)
)

0)
1)
1)
4)

assert”((add 1 0
assert” ((add 2 2

8

=y1x2x1add
10 6 1 A
41 2 2 A

> Int) = Ax1.{Ax2.{

((add y1) (1 + x2))
(1+)

Fig. 3. Hazel Live Assistant: Here we collaborate with the Smyth synthesizer to write a function to add Peano-representation integers. Here we are working
around the fact that the Smyth synthesizer supports only algebraic data types, which are not supported by Hazel; we translate the successor constructor to "+
17 and destructure a successor by subtracting 1. (3.1) portrays a stubbed-out function with two user-provided examples. (3.2-3.4) show the process of stepping
through a synthesis refinement tree: The user is offered a menu of options; at these stages there is only one suggested completion. The black panel displays
the unevaluated constraints which must be satisfied. (3.5) shows a finished but overspecialized solution; the user resolves this by stepping out of synthesis and
adding two more examples. (3.6-3.8) represent the result of deleting the ”x2” reference and resuming synthesis. This time the user has more options; either
casing on x1 or x2 (3.6), and adding 1 before or after the recursive call (3.8). (3.9) shows the completed function

IV. HAZEL LIVE ASSISTANT

The Hazel Live Assistant extends the Base Assistant by inte-
grating with a more sophisticated external type-and-example-
directed synthesizer, Smyth [36]. To support human-in-the-
loop synthesis it employs a more complex interaction, with
the Smyth synthesizer incorporating non-trivial retained state.

In the Hazel editor, all expressions, including incomplete
ones, have well-defined evaluation results. Via a process
called live evaluation [35], empty holes are propagated as
placeholders into the evaluated result, and ill-typed expressions
are partially evaluated by placing them in non-empty holes
and evaluating around them. Smyth additionally uses [live
unevaluation to propagate the values from assertions back-
ward through the program as additional synthesis constraints.
Thus the Live Assistant demonstrates extending the reach of
Analyzers into program execution.

In the small, the Live Assistant behaves similarly to the
Base Assistant. When activated on a hole, it presents a list
of candidate hole fillings which may be navigated via the
up/down arrows. Each entry in this case is not only type
compatible, but represents a refinement step which, possibly
after further refinements, may result in a term satisfying the
provided assertions.

Like the Base Assistant, the Live Assistant explains sug-
gestions. The rows of the black boxes in Figure 3 represent
constraints. The column marked ’=’ indicates the values the
current term must take to satisfy the assertions when the
variables take on the values indicated in the other columns.
Unlike the Base Assistant, the Live Assistant is a suggestion
synthesizer that maintains nontrivial state. If the user accepts a
non-terminal refinement — that is, a refinement which contains
holes — the suggestion is not immediately committed. Rather,
the suggestion menu advances to the first contained hole,

stepping deeper into the refinement tree. This Ul expedites
user-directed backtracking, allowing easy exploration of forks
in the synthesis process by binding the left/right arrow keys
to forward/backward movement in the refinement tree.

This process of flexible exploration is also exploited in the
synthesis back-end, as the refinement tree is lazily generated,
allowing the possibility of the human in the loop manually
resolving chokepoints where the constraints in the code itself
do not sufficiently restrict the search space.

V. DISCUSSION

This paper attempts to organize the burgeon area of pro-
gramming assistant design with a high level architecture and
terminology, and then demonstrates the feasibility of this archi-
tecture for design explorations with two prototype assistants,
both integrated into the Hazel platform. These design explo-
rations highlight design criteria that are perhaps understudied:
semantic ranking, integration, explanations, and human-in-
the-loop interactions with synthesizers. We hope that this
work helps to bring together various communities working
on individual components of the overall system design and
ultimately to tap the creative and collaborative potential of
human-in-the-loop programming assistants.

Our own design efforts remain ongoing. One key direction
is to directly incorporate Al techniques, in particular deep
reinforcement learning, which also is oriented around an action
space and a reward/scoring structure (human acceptance, tests
passing, type errors resolution). We are also working to incor-
porate more complex multistage refactorings via interactive
monadic edit actions, extending work on edit-time tactics in
proof assistants [37].

VI. ACKNOWLEDGEMENTS

We would like to thank Xinyu Wang for his encouragement
and support; the Hazel Live Assistant began as a project in his
program synthesis class. We would also like to thank Justin
Lubin for his patient and comprehensive advice in properly
integrating the Smyth synthesizer.

[1]

[2

—

[3]

[4]

[5]

[6]

[7]

[8]

[9]

(10]

(1]

(12]

[13]

[14]

[15]

[16]

(17]

REFERENCES

C. Rich, H. E. Shrobe, and R. C. Waters, “Overview of the Program-
mer’s Apprentice,” in Sixth International Joint Conference on Artificial
Intelligence, 1JCAI 79, 1979, pp. 827-828.

C. Rich and H. E. Shrobe, “Initial Report on a Lisp Programmer’s
Apprentice,” IEEE Trans. Software Eng., vol. 4, no. 6, pp. 456-467,
1978. [Online]. Available: https://doi.org/10.1109/TSE.1978.233869

H. E. Shrobe, B. Katz, and R. Davis, “Towards a Programmer’s
Apprentice (Again),” in Twenty-Ninth AAAI Conference on
Artificial Intelligence, 2015, pp. 4062-4066. [Online]. Available:
http://www.aaai.org/ocs/index.php/AAAI/AAAIL5/paper/view/9672

D. Hou and D. M. Pletcher, “An Evaluation of the Strategies of Sorting,
Filtering, and Grouping API Methods for Code Completion,” in 2011
27th IEEE International Conference on Software Maintenance (ICSM).
IEEE, 2011, pp. 233-242.

R. Robbes and M. Lanza, “How Program History Can Improve Code
Completion,” in 2008 23rd IEEE/ACM International Conference on
Automated Software Engineering. 1EEE, 2008, pp. 317-326.

M. Bruch, M. Monperrus, and M. Mezini, “Learning from Examples
to Improve Code Completion Systems,” in 7th Joint Meeting of the
European Software Engineering Conference and the ACM SIGSOFT
Symposium, 2009, pp. 213-222.

G. C. Murphy, M. Kersten, and L. Findlater, “How Are Java Software
Developers Using the Eclipse IDE?” IEEE Software, vol. 23, no. 4, pp.
76-83, 2006.

S. Gulwani, O. Polozov, and R. Singh, “Program Synthesis,” Found.
Trends Program. Lang., vol. 4, no. 1-2, pp. 1-119, 2017. [Online].
Available: https://doi.org/10.1561/2500000010

P.-M. Osera and S. Zdancewic, “Type-and-Example-Directed Program
Synthesis,” Programming Language Design and Implementation (PLDI),
vol. 50, no. 6, pp. 619-630, 2015.

J. Frankle, P.-M. Osera, D. Walker, and S. Zdancewic, “Example-
Directed Synthesis: A Type-Theoretic Interpretation,” in Symposium on
Principles of Programming Languages (POPL), 2016.

A. Solar-Lezama, “Program Sketching,” International Journal on Soft-
ware Tools for Technology Transfer, vol. 15, no. 5, pp. 475-495, 2013.
A. Miltner, S. Gulwani, V. Le, A. Leung, A. Radhakrishna, G. Soares,
A. Tiwari, and A. Udupa, “On the Fly Synthesis of Edit Suggestions,”
Proc. ACM Program. Lang., vol. 3, no. OOPSLA, oct 2019. [Online].
Available: https://doi.org/10.1145/3360569

T. A. Lau, P. M. Domingos, and D. S. Weld, “Version Space Algebra
and its Application to Programming by Demonstration.” in /CML, 2000,
pp. 527-534.

N. Polikarpova, I. Kuraj, and A. Solar-Lezama, “Program Synthesis
From Polymorphic Refinement Types,” Programming Language Design
and Implementation (PLDI), vol. 51, no. 6, pp. 522-538, 2016.

M. P. Gissurarson, “Suggesting Valid Hole Fits for Typed-Holes (Ex-
perience Report),” ACM SIGPLAN International Symposium on Haskell
11, vol. 53, no. 7, pp. 179-185, 2018.

, “The Hole Story: Type-Driven Synthesis and Repair,” Licentiate
Thesis, 2022.

M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. d. O. Pinto, J. Kaplan,
H. Edwards, Y. Burda, N. Joseph, G. Brockman, A. Ray, R. Puri,
G. Krueger, M. Petrov, H. Khlaaf, G. Sastry, P. Mishkin, B. Chan,
S. Gray, N. Ryder, M. Pavlov, A. Power, L. Kaiser, M. Bavarian,
C. Winter, P. Tillet, F. P. Such, D. Cummings, M. Plappert, F. Chantzis,
E. Barnes, A. Herbert-Voss, W. H. Guss, A. Nichol, A. Paino, N. Tezak,
J. Tang, 1. Babuschkin, S. Balaji, S. Jain, W. Saunders, C. Hesse,
A. N. Carr, J. Leike, J. Achiam, V. Misra, E. Morikawa, A. Radford,
M. Knight, M. Brundage, M. Murati, K. Mayer, P. Welinder,
B. McGrew, D. Amodei, S. McCandlish, I. Sutskever, and W. Zaremba,
“Evaluating Large Language Models Trained on Code,” 2021. [Online].
Available: https://arxiv.org/abs/2107.03374

(18]

[19]

[20]

[21]

(22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

[35]

[36]

[37]

E. C. R. Shin, M. Allamanis, M. Brockschmidt, and A. Polozov,
“Program Synthesis and Semantic Parsing with Learned Code Idioms,”
in Advances in Neural Information Processing Systems 32: Annual
Conference on Neural Information Processing Systems (NeurIPS), H. M.
Wallach, H. Larochelle, A. Beygelzimer, F. d’ Alché-Buc, E. B. Fox, and
R. Garnett, Eds., 2019, pp. 10824-10834.

V. Raychev, M. Vechev, and E. Yahav, “Code Completion with Statistical
Language Models,” in Programming Language Design and Imple-
mentation (PLDI). Association for Computing Machinery, 2014, p.
419-428. [Online]. Available: https://doi.org/10.1145/2594291.2594321
J. Li, Y. Wang, I. King, and M. R. Lyu, “Code Completion with Neural
Attention and Pointer Networks,” Proceedings of the 27th International
Joint Conference on Artificial Intelligence (IJCAI'1S8), 2017. [Online].
Available: http://arxiv.org/abs/1711.09573

T. Zhang, Z. Chen, Y. Zhu, P. Vaithilingam, X. Wang, and
E. L. Glassman, “Interpretable Program Synthesis,” in 2021 CHI
Conference on Human Factors in Computing Systems, ser. CHI 21.
Association for Computing Machinery, 2021. [Online]. Available:
https://doi.org/10.1145/3411764.3445646

T. Zhang, L. Lowmanstone, X. Wang, and E. L. Glassman, Interactive
Program Synthesis by Augmented Examples. UIST, 2020, p. 627-648.
[Online]. Available: https://doi.org/10.1145/3379337.3415900

C. Omar, I. Voysey, M. Hilton, J. Aldrich, and M. A. Hammer,
“Hazelnut: A Bidirectionally Typed Structure Editor Calculus,” in
ACM SIGPLAN Symposium on Principles of Programming Languages
(POPL), 2017.

H. Potter and C. Omar, “Hazel Tutor: Guiding Novices Through Type-
Driven Development Strategies,” Human Aspects of Types and Reason-
ing Assistants (HATRA), 2020.

F. Bour, T. Refis, and G. Scherer, “Merlin: A Language Server for
OCaml (Experience Report),” Proc. ACM Program. Lang., vol. 2, no.
ICFP, jul 2018. [Online]. Available: https://doi.org/10.1145/3236798

C. Omar, L. Voysey, M. Hilton, J. Sunshine, C. Le Goues, J. Aldrich, and
M. A. Hammer, “Toward Semantic Foundations for Program Editors,”
in Summit on Advances in Programming Languages (SNAPL), 2017.
S. L. Graham, C. B. Haley, and W. N. Joy, “Practical LR Error
Recovery,” in SIGPLAN Symposium on Compiler Construction (CC),
1979.

M. de Jonge, E. Nilsson-Nyman, L. C. L. Kats, and E. Visser, “Nat-
ural and Flexible Error Recovery for Generated Parsers,” in Software
Language Engineering (SLE), 2009.

R. Robbes and M. Lanza, “How Program History Can Improve Code
Completion,” in 2008 23rd IEEE/ACM International Conference on
Automated Software Engineering, 2008, pp. 317-326.

S. Han, D. R. Wallace, and R. C. Miller, “Code Completion from
Abbreviated Input,” in 2009 IEEE/ACM International Conference on
Automated Software Engineering, 2009, pp. 332-343.

H. Finkel and I. Laguna, “Report of the Workshop on Program
Synthesis for Scientific Computing,” 2021. [Online]. Available:
https://arxiv.org/abs/2102.01687

D. Doran, S. Schulz, and T. R. Besold, “What Does Explainable Al
Really Mean? A New Conceptualization of Perspectives,” arXiv preprint
arXiv:1710.00794, 2017.

C. Omar, Y. S. Yoon, T. D. LaToza, and B. A. Myers, “Active
Code Completion,” in 2012 34th International Conference on Software
Engineering (ICSE), 2012, pp. 859-869.

H. Peleg, R. Gabay, S. Itzhaky, and E. Yahav, “Programming with
a Read-Eval-Synth Loop,” OOPSLA, vol. 4, nov 2020. [Online].
Available: https://doi.org/10.1145/3428227

C. Omar, 1. Voysey, R. Chugh, and M. A. Hammer, “Live Functional
Programming with Typed Holes,” Proceedings of the ACM on Program-
ming Languages (PACMPL), Issue POPL, 2019.

J. Lubin, N. Collins, C. Omar, and R. Chugh, “Program Sketching with
Live Bidirectional Evaluation,” Proceedings of the ACM on Program-
ming Languages, vol. 4, no. ICFP, pp. 1-29, 2020.

J. Korkut, “Edit-Time Tactics in Idris,” Master’s thesis, Wesleyan
University, 2018.

