
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Totally Live Programming in Hazel (Progress Report)

CYRUS OMAR, University of Michigan, USA
ANDREW BLINN, University of Michigan, USA
DAVID MOON, University of Michigan, USA

Modern programming environments provide developers with an arsenal of semantic services—for
example, type hints, semantic navigation, code completion, automated refactorings, debugging,
run-time instrumentation, and so on—that require syntactic, static, and dynamic reasoning about a
program as it is being developed. The problem is that when the program being edited is erroneous,
these semantic services can become degraded or unavailable [Omar et al. 2017b]. These gaps in
service are not always transient. For example, a change to a type definition might result in type
errors at dozens of use sites in a large program, which might take hours to resolve, all without the
full aid of these services. An error anywhere renders the program formally meaningless everywhere.

This gap problem has prompted considerable interest in (1) error localization: mechanisms for
identifying the location(s) in a program that explain an error, and (2) error recovery: mechanisms
that allow the system to optimistically recover from a localized error and continue on to locate other
errors and provide downstream semantic services, ideally at every location in the program and
with minimal gaps in service. Essentially all widely-used programming systems have some support
for error localization, e.g. in compiler or run-time error messages. Developers are known to attend
to reported error locations when debugging errors [Joosten et al. 1993]. Many systems also attempt
recovery in certain situations, e.g. by ignoring the erroneous definition and attempting to continue
on. However, error localization and recovery mechanisms have developed idiosyncratically, in
part as folklore amongst language and tool implementors. Different compilers or language servers
[Barros et al. 2022; Bour et al. 2018], even for the same language, localize and recover from type
errors in different ways, with little in the way of unifying theory of the sort that grounds the design
of modern type systems themselves.

The Hazel project (https://hazel.org/) has sought to address this problem by developing principled
language-theoretic foundations for syntax, type, and run-time error localization and recovery. In
particular, the Hazel project has developed total error localization and recovery methods: there are
no malformed or meaningless editor states in Hazel. Instead, Hazel automatically inserts empty
and non-empty holes into the program to ensure that each and every editor state is well-structured
[Moon et al. 2022, 2023] and statically [Omar et al. 2017a] and dynamically [Omar et al. 2019]
meaningful. In short, Hazel is the first totally live typed general-purpose programming environment.

The proposed talk will review the underlying theoretical developments and include live demos
of the Hazel programming environment, which scales up these theoretical foundations to a full-
scale live functional programming environment, with support for features like pattern matching
(with pattern holes [Yuan et al. 2023]) and modules. Hazel has been used to introduce functional
programming to students in an undergraduate programming languages course at the University
of Michigan, and the talk will also demonstrate the educational technology underlying this effort
[Potter et al. 2022; Potter and Omar 2020] as well as the results of our initial assessments of its
usability and suitability in an educational setting. Finally, we will discuss ongoing and future efforts,
with a particular emphasis on using these underlying semantic mechanisms to develop useful editor
services (including semantically contextualized programming assistants that integrate a variety of
techniques, including generative AI models [Blinn et al. 2022]) and evaluate them with humans.

Authors’ addresses: Cyrus Omar, comar@umich.edu, University of Michigan, USA; Andrew Blinn, blinnand@umich.edu,
University of Michigan, USA; David Moon, dmoo@umich.edu, University of Michigan, USA.

https://hazel.org/


50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

2 Cyrus Omar, Andrew Blinn, and David Moon

REFERENCES
Djonathan Barros, Sven Peldszus, Wesley KG Assunção, and Thorsten Berger. 2022. Editing support for software languages:

implementation practices in language server protocols. In Proceedings of the 25th International Conference on Model
Driven Engineering Languages and Systems. 232–243.

Andrew Blinn, David Moon, Eric Griffis, and Cyrus Omar. 2022. An Integrative Human-Centered Architecture for Interactive
Programming Assistants. In 2022 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC). IEEE,
1–5.

Frédéric Bour, Thomas Refis, and Gabriel Scherer. 2018. Merlin: a language server for OCaml (experience report). Proceedings
of the ACM on Programming Languages 2, ICFP (2018), 1–15.

Stef Joosten, Klaas van den Berg, and Gerrit van Der Hoeven. 1993. Teaching Functional Programming to First-Year Students.
J. Funct. Program. 3, 1 (1993), 49–65. https://doi.org/10.1017/S0956796800000599

David Moon, Andrew Blinn, and Cyrus Omar. 2022. tylr: a tiny tile-based structure editor. In Proceedings of the 7th ACM
SIGPLAN International Workshop on Type-Driven Development. 28–37.

DavidMoon, Andrew Blinn, and Cyrus Omar. 2023. Gradual Structure Editing with Obligations. In To appear, IEEE Symposium
on Visual Languages and Human-Centric Computing, VL/HCC 2023.

Cyrus Omar, Ian Voysey, Ravi Chugh, and Matthew A. Hammer. 2019. Live Functional Programming with Typed Holes.
Proc. ACM Program. Lang. 3, POPL, Article 14 (Jan. 2019), 32 pages. https://doi.org/10.1145/3290327

Cyrus Omar, Ian Voysey, Michael Hilton, Jonathan Aldrich, and Matthew A. Hammer. 2017a. Hazelnut: A Bidirectionally
Typed Structure Editor Calculus. In ACM SIGPLAN Symposium on Principles of Programming Languages (POPL).

Cyrus Omar, Ian Voysey, Michael Hilton, Joshua Sunshine, Claire Le Goues , Jonathan Aldrich, and Matthew A. Hammer.
2017b. Toward Semantic Foundations for Program Editors. In Summit on Advances in Programming Languages (SNAPL).

Hannah Potter, Ardi Madadi, René Just, and Cyrus Omar. 2022. Contextualized Programming Language Documentation.
In Proceedings of the 2022 ACM SIGPLAN International Symposium on New Ideas, New Paradigms, and Reflections on
Programming and Software. 1–15.

Hannah Potter and Cyrus Omar. 2020. Hazel Tutor: Guiding Novices Through Type-Driven Development Strategies. Human
Aspects of Types and Reasoning Assistants (HATRA) (2020).

Yongwei Yuan, Scott Guest, Eric Griffis, Hannah Potter, David Moon, and Cyrus Omar. 2023. Live Pattern Matching with
Typed Holes. Proc. ACM Program. Lang. 7, OOPSLA1, Article 96 (apr 2023), 27 pages. https://doi.org/10.1145/3586048

https://doi.org/10.1017/S0956796800000599
https://doi.org/10.1145/3290327
https://doi.org/10.1145/3586048

	References

