
Incremental Bidirectional Typing via Order
Maintenance

Thomas J. Porter1 Marisa Kirisame2 Liam Mulcahy1 Pavel Panchekha2 Cyrus Omar1

1University of Michigan 2University of Utah

Motivation
In live programming systems, editor services such as type
checking and evaluation are continually provided while the
user is editing the program. The live paradigm offers bene-
fits to developer experience and productivity. Many editor
services are most easily expressed as stateless transforma-
tions that take only the current the program text as input,
and compute the result from scratch. For live programming
at scale, these services cannot be implemented naively as
pure functions, since the execution time will grow with the
size of the program, and at some point will take longer than
the time between edits. Incremental type checking aims to
overcome this limitation by maintaining type information
between states of the program. We present an algorithm for
fine-grained incremental maintenance of typing information
for the marked lambda calculus [9] across structural edits.

Problem
Themarked lambda calculus [9] defines a pure, total function
from an ordinary program in the typed lambda calculus to a
marked program, which is the same as the input except for
the addition of marks, localized type error annotations. It is
these marks, as well as synthesized and analyzed types at
subterms, that we to incrementally maintain.

We consider structural edit actions, such as the insertion
or deletion of an AST node, as our atomic changes to the
input. We make no assumptions about the sequence of edit
actions, since we aim to handle cases such as collaborative
editing with many cursors or compound actions.
We make no assumption about the form of the program,

such as being partitioned into files. We therefore incremen-
talize typing at the finest granularity possible: individual
syntax nodes. We make no assumptions about the size of
the program, and in fact target very large scale programs.
Since the typing updates incurred by an edit may be arbitrar-
ily expensive to compute, we must not halt normal editor
operation while computing these updates. This constraint
fundamentally shapes our solution.

Actions and Update Propagation
Our solution maintains an enriched program data structure
(EP), which stores local typing and binding information and
is endowed with update propagation dynamics. A program
edit updates the EP efficiently, after which the EP takes a
sequence of efficient steps to propagate the changes gener-
ated by the edit. By separating the incremental update into

an action judgment which updates the EP when an action
is applied at a cursor location and an update propagation
judgment which advances a not-fully propagated EP forward
by one step, even those actions which necessitate long re-
computation times do not block further actions from being
taken; indeed, actions and update propagation steps can be
applied in any order without threatening the validity of the
incremental statics with respect to the from-scratch analysis.

Order Maintenance
This local propagation mechanism exploits the type system’s
locality, making it suitable for a bidirectional typing disci-
pline [4]. However, even such a “local” type system exhibits
nonlocality between binders and their bound variables. We
opt to maintain pointers along these bindings, rather than
walking the spine of the program.

To maintain these binders, we employ an order mainte-
nance data structure, a totally ordered collection of elements
that supports efficient comparison between elements and
insertion of new elements. By annotating each AST node
with an interval in the order maintenance data structure, it
is possible to test whether one node is the ancestor of an-
other in logarithmic time. This efficient test is the basis of
our algorithm for maintaining binding pointers.

Related Work
This work follows the work on adaptive functional program-
ming [1] in employing the order maintenance data structure
of Dietz and Sleator [3] to maintain the dynamic dependency
structure between parts of the program. The prior work on
adaptive functional programming presents general transla-
tions to incremental programs, using order maintenance to
prioritize the recomputation of intermediate values. On the
other hand, the present work is specialized to bidirectional
typing and uses order maintenance to maintain scoping data.
Prior approaches to incremental typing utilize a task en-

gine [8], derive memoized typing rules [2], or translate typ-
ing rules to a Datalog program that can be solved incre-
mentally [6, 7]. This last technique uses co-contextual typ-
ing [5], in which binding information is propagated bottom
up rather than top down, to overcome issues related to bind-
ing structure updates. Compared to these approaches, our
incremental typing system is less general, but achieves very
fine granularity and direct binding updates by specializing
to a bidirectionally typed lambda calculus.

1



References
[1] Umut A. Acar, Guy E. Blelloch, and Robert Harper. 2002. Adaptive

functional programming. In Conference Record of POPL 2002: The 29th
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
Portland, OR, USA, January 16-18, 2002, John Launchbury and John C.
Mitchell (Eds.). ACM, 247–259. https://doi.org/10.1145/503272.503296

[2] Matteo Busi, Pierpaolo Degano, and Letterio Galletta. 2019. Using
Standard Typing Algorithms Incrementally. In NASA Formal Methods
- 11th International Symposium, NFM 2019, Houston, TX, USA, May 7-
9, 2019, Proceedings (Lecture Notes in Computer Science, Vol. 11460),
Julia M. Badger and Kristin Yvonne Rozier (Eds.). Springer, 106–122.
https://doi.org/10.1007/978-3-030-20652-9_7

[3] Paul F. Dietz and Daniel Dominic Sleator. 1987. Two Algorithms for
Maintaining Order in a List. In Proceedings of the 19th Annual ACM
Symposium on Theory of Computing, 1987, New York, New York, USA,
Alfred V. Aho (Ed.). ACM, 365–372. https://doi.org/10.1145/28395.28434

[4] Jana Dunfield and Neel Krishnaswami. 2022. Bidirectional Typing. ACM
Comput. Surv. 54, 5 (2022), 98:1–98:38. https://doi.org/10.1145/3450952

[5] Sebastian Erdweg, Oliver Bracevac, Edlira Kuci, Matthias Krebs, and
Mira Mezini. 2015. A co-contextual formulation of type rules and its ap-
plication to incremental type checking. In Proceedings of the 2015 ACM
SIGPLAN International Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications, OOPSLA 2015, part of SPLASH 2015,

Pittsburgh, PA, USA, October 25-30, 2015, Jonathan Aldrich and Patrick
Eugster (Eds.). ACM, 880–897. https://doi.org/10.1145/2814270.2814277

[6] André Pacak, Sebastian Erdweg, and Tamás Szabó. 2020. A systematic
approach to deriving incremental type checkers. Proc. ACM Program.
Lang. 4, OOPSLA (2020), 127:1–127:28. https://doi.org/10.1145/3428195

[7] Tamás Szabó, Sebastian Erdweg, and Markus Voelter. 2016. IncA: a
DSL for the definition of incremental program analyses. In Proceedings
of the 31st IEEE/ACM International Conference on Automated Software
Engineering, ASE 2016, Singapore, September 3-7, 2016, David Lo, Sven
Apel, and Sarfraz Khurshid (Eds.). ACM, 320–331. https://doi.org/10.
1145/2970276.2970298

[8] Guido Wachsmuth, Gabriël D. P. Konat, Vlad A. Vergu, Danny M. Groe-
newegen, and Eelco Visser. 2013. A Language Independent Task Engine
for Incremental Name and Type Analysis. In Software Language Engi-
neering - 6th International Conference, SLE 2013, Indianapolis, IN, USA,
October 26-28, 2013. Proceedings (Lecture Notes in Computer Science,
Vol. 8225), Martin Erwig, Richard F. Paige, and Eric Van Wyk (Eds.).
Springer, 260–280. https://doi.org/10.1007/978-3-319-02654-1_15

[9] Eric Zhao, Raef Maroof, Anand Dukkipati, Andrew Blinn, Zhiyi Pan,
and Cyrus Omar. 2024. Total Type Error Localization and Recovery
with Holes. Proc. ACM Program. Lang. 8, POPL (2024), 2041–2068.
https://doi.org/10.1145/3632910

2

https://doi.org/10.1145/503272.503296
https://doi.org/10.1007/978-3-030-20652-9_7
https://doi.org/10.1145/28395.28434
https://doi.org/10.1145/3450952
https://doi.org/10.1145/2814270.2814277
https://doi.org/10.1145/3428195
https://doi.org/10.1145/2970276.2970298
https://doi.org/10.1145/2970276.2970298
https://doi.org/10.1007/978-3-319-02654-1_15
https://doi.org/10.1145/3632910

	References

