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We survey publications that report on the experience of introducing proof assistants into classrooms, identifying
observed advantages and challenges. From this, we synthesize a series of design criteria for classroom proof
assistants, and suggest methods for evaluating future designs against these criteria. Finally we discuss how
we are using these criteria to guide design decisions in ongoing work on designing the Hazel Prover.

1 INTRODUCTION

Proofs are integral to all areas of math, science, and technology. Depending on the topic of study,
these proofs may take the form of equational reasoning, logical derivations, geometric derivations,
or program correctness proofs. Students are most commonly taught to write proofs by hand, with
little to no direct feedback or mechanical assistance during the proof writing process. It is only
much later, during grading, that course staff laboriously check the student’s proof steps. This leads
to delayed, erroneous, and inconsistent feedback, and ultimately limits learning.

In contrast, students solving programming problems enjoy access to educational programming
environments and autograders that provide live feedback and assistance throughout the problem
solving process, resulting in a tighter feedback loop and minimizing manual human effort, errors,
and inconstencies.

Is it possible to bring this sort of automated feedback and assistance to proof problems? Over the
past several decades, the formal methods community has developed proof assistants that provide
feedback and assistance to experts as they write proofs. Several authors, given in Table 1, have tried
using these proof assistants in the classroom. Others, concerned with the steep learning curve of
proof assistants designed for experts, have designed new proof assistants specifically for classroom
use. Some of these interfaces are given in Table 2.

Theorem Prover [9] | Examples

Coq [9] Henz and Hobor [19], Knobelsdorf et al. [26], Gallego Arias et al. [13],
Hendriks et al. [18], Delahaye et al. [11], Pierce [34]

Lean [10] Avigad [3], Thoma and Iannone [42]

Isabelle [31] Jacobsen and Villadsen [20], Nipkow [30]

Table 1. Experiences using full-scale proof assistants with students.

Layout Examples

Tactic-based Wemmenhove et al. [43] Bentkamp et al. [4] Karsten et al. [22]
Close to pen and paper | Rognier and Duhamel [36] Billingsley and Robinson [5] O’Connor
and Amjad [32] Lodder et al. [28]

Proof trees Staudacher et al. [40] Cerna et al. [8] Geck et al. [15] Gasquet
et al. [14] Machin and Sierra [29] O’Connor and Amjad [32]

Table 2. A selection of proof assistants designed for education.
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Many of these publications have reported positive experiences for teachers and students, and
found specific advantages that we will detail below. We need to be cautious with positive reports,
however, as we are likely to see a bias in the literature towards success stories. Many of these
reports also detail the challenges they faced introducing these tools to the classroom.

We are not yet aware of any efforts to introduce Large Language Model technology into proof
classrooms, so we will not discuss their use, but we recognise that there is much future work that
could be done with LLMs, especially with regards to feedback.

In the next section we will survey the papers in Table 1 and those in Table 2 with classroom
deployments, and later we report on our ongoing work on the Hazel Prover, which is a theorem
prover integrated into the Hazel live functional programming environment.

2 DESIGN CRITERIA AND RELATED WORK

In this section, we synthesize a set of design criteria for classroom proof assistants. We do not aim
to be comprehensive in our survey of classroom proof assistants. Instead we focus on papers with
substantial and interesting experience reports or experiments; most of these are recent papers. We
intersperse these criteria with qualitative and quantitative research methods that may be used to
evaluate candidate educational interventions against each design criteria. Again, we do not aim to
be comprehensive or fully detailed here, but rather to encourage designers of these tools to think
about how they could evaluate their claims.

2.1 Immediate and Comprehensive Feedback

2.1.1  Advantages of Computer Feedback. As students write or typeset proofs manually, they receive
little to no immediate feedback or mechanical assistance [1]. Instead, their tentative proof is only
checked days or weeks later, at great institutional expense, by course staff. The feedback the student
ultimately receives after this laborious grading process can sometimes be vague, erroneous, or
inconsistent between students. This time spent grading work can also take away time from more
valuable formats of instructor feedback, such as office hours. Students report confusion and a
sense that these proof-heavy courses “did little to aid students” [38, 41]. This has been observed to
contribute to the disproportionate withdrawal of under-represented students [37].

In stark contrast, students solving programming problems nearly always have access to (1) pro-
gramming environments that continuously report syntax and type errors and provide helpful
completions, and (2) autograders that compare actual and intended program behavior. This tight
feedback loop allows students to iterate rapidly to refine their mental models and quickly cor-
rect their own misconceptions [24, 25]. This has motivated the development of classroom proof
assistants too. Students using SaSyLF [2] “felt they benefited from earlier feedback from the tool".

2.1.2  Design Considerations for Good Feedback. In order to make use of this feedback, it is important
it is interpretable and helpful. The feedback given by full-scale proof assistants is often not tailored
to students learning proof for the first time. Avigad [3] noted that Lean’s “error messages were not
sufficient for [students] to figure out what they were doing". Likewise Aldrich et al. [2] reported
that their tool’s messages “indicate that there is a problem but are not always able to point to why

the problem exists."

DEsIGN CRITERION 1 (EXPLANATION OF ERRORS). Classroom proof assistants should provide error
messages that make it clear what specific mistake a student has made, and offer guidance for how to
correct it.
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The Diproche system [7] checks students’ proofs with an automated theorem prover, and when
the reasoning is incorrect, tries adding certain incorrect axioms representing typical mistakes, and
if successful tells the user which mistake they likely made.

ExXPERIMENT 1.1 (LoG ANALYSIS). To test which errors students receive, and whether students are
able to resolve them we can log the errors students receive while using a proof assistant. We can log the
number and types of errors encountered by students, as well as recording the time it takes for students
to resolve these errors.

EXPERIMENT 1.2 (A/B TESTING). We can measure the usefulness of errors by A/B testing. We can
give some users full feedback and others reduced feedback [27]. By comparing these two groups we can
see if there are advantages of full feedback.

As well as reporting errors in a proof script, it is also helpful if a checker can recover from errors
and continue checking the rest of the proof. This allows the checker to mark parts of the proof
as correct, and find other errors in the proof script before the first ones are resolved, allowing an
autograder to award partial credit.

This recovery from errors also makes feedback more useful for students. One student using
SaSyLF [2] said they wanted the tool to provide assurance by marking judgments that were correct.
This assurance would both make it easier to find errors by ruling out correct parts of the proof, and
help contribute to the sense of satisfaction in section 2.3.2.

DEsIGN CRITERION 2 (ERROR TOLERANCE). The feedback from a classroom proof assistant should,
where possible, be able to recover from an error in one part of the proof and mark the rest of the proof
as either correct, or containing more errors.

2.2 Scaffolding Building Proofs

In pen-and-paper proof, new students can often be intimidated by seeing a blank sheet of paper,
unsure how to begin. An interactive tool can help students see what next steps are available to
them and how to use them at any given stage in a proof. Seeing the available options can provide
inspiration, allow students to try out the options to see what they do, and can rule out some
nonsense steps [30] students might otherwise attempt. We refer to these tools that allow students
to write proofs that they wouldn’t be able to produce without the tool as supports or scaffolds.

DESIGN CRITERION 3 (SUPPORTING EXPLORATION). Learners should be able to use the tool without
already knowing all the details of the proof they want to produce. The tool should help give them ideas
for next steps, and explain what each of the steps the user could take would do.

EXPERIMENT 3.1 (HOMEWORK ANALYsIS). We can record what proportion of questions are attempted
by students when using the tool, and compare this to the attempts from written exams the year before
the tool was introduced.

Scaffolds [17] are distinct from supports in that students must not become dependent a the
scaffold, whereas when using a support, a user is never expected to learn how to perform the same
task without a support.

Whether we want a proof assistant to serve as a scaffold or a support depends on the learning
objectives of the course. Kerjean et al. [23] ask whether the purpose of using Coq in education is
to teach Coq itself, or to teach mathematics using Coq. In the first case Coq is used as a support,
and students should learn how to use all the automation features of Coq and follow all the coding
standards expected in the Coq community. In the second case, Coq is used as a scaffold and you
need to make sure that students can reproduce everything they do on pen and paper. This means
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the tool should make sure users are familiar with the kinds of notation they would be expected to
use on paper, and the proof layout they would be expected to produce.

In this report we are going to mostly assume the second, or more specifically that we are trying
to teach proof skills using proof assistants, and that the classroom proof assistant must therefore be
able to fade away. In practice there may be certain domains of computer science and math where
students’ use of industry-standard proof assistants is desired.

Results from past work are clear that proof assistant tools are able to act as a support. For example,
Kerjean et al. [23] conclude that students using a proof assistant were more likely to search for
proofs instead of giving up.

Previous work has a more mixed experience of how dependent students become on the proof
assistant. Certain authors have reported transfer to pen-and-paper [30] [42]. Other authors have
found it hard to transfer student’s skills to pen-and-paper [26] [6].

A first step to transfer to pen-and-paper is to ensure that students engaging with the proof
assistant are actually engaging in proof. Guillot and Narboux [23] found 47% of respondents who
used Edukera in their introductory proof course reported that they were able to complete several
exercises in Edukera without understanding anything, by clicking randomly. Henz and Hobor [19]
found that students who didn’t have a clear model of what Coq tactics were doing would “try tactics
at random until for some unknown reason they hit on the right combination." They remedied this
by providing their students with diagrams explaining exactly what the tactic does.

DESIGN CRITERION 4 (REQUIRE ENGAGEMENT). It should not be possible to complete exercises by
automation or random clicking alone, the assistant must force students to learn in order to proceed.
This can be done either by making it easier to learn necessary concepts, or making it harder to proceed.

EXPERIMENT 4.1 (SURVEY). To determine whether students are able to complete tasks randomly, we
can survey students and ask whether they were able to complete exercises randomly. It may be worth
also creating a baseline by asking students whether they were also able to complete written exercises
by guessing.

EXPERIMENT 4.2 (INTERVIEW). To determine whether users understand the proof tactics they have
used, we can allow users to write a proof using the tool, and then ask them to explain the tactics they
have used.

In order to facilitate transfer to pen-and-paper proofs, we should consider whether the proofs
done on the computer are similar to those written on pen-and-paper. After introducing Coq to their
classroom, Knobelsdorf et al. [26] observed that “students constantly performed better when using
Coq in comparison to pen & paper". They rule out the possibility that students had just been solving
Coq problems randomly because of the complexity of some of their exercises. They conclude instead
that the skills learned in proving with Coq didn’t naturally transfer to pen-and-paper because Coq
proofs are so different to handwritten proofs.

DESIGN CRITERION 5 (NOTATION SIMILAR TO WRITTEN PROOFS). Proofs in the tool should be laid
out similarly to how students would be expected to produce proofs without the tool to make it easier to
transfer proof competency.

Bohne and Kreitz [6] build on Knobselsdorf’s work, but argue that specializing proof assistant
syntax to their course would take too much time. They therefore attempt a generic method for
transferring competency from proof assistants to paper proofs, no matter how dissimilar the
notation.

There have been many other attempts at making the proof assistant’s notation more closely
match pen-and-paper proofs. These vary widely, since their interface depends on the kind of proof
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teachers want students to produce. For example, several interfaces have been created for producing
tree-style proofs (examples in Table 2).

EXPERIMENT 5.1 (ASSESSMENT). We can check that proof competency has actually transferred
to pen-and-paper by seeing whether students can reproduce proofs they have created in the tool on
pen-and-paper.

Guillot and Narboux [36], observed that some students, after completing all their exercises on
the Edukera platform, would struggle to reproduce their answers on paper because they could
remember the structure of the proof but not the definitions they used. This suggests that providing
definitions for the user to click on is an example of a support, but not a scaffold as users become
reliant on it. Guillot and Narboux solved the definition problem by interleaving on-tool proof
exercises with off-tool definition recall exercises. We hypothesize that it should also be possible to
design a tool such that students are required to practice producing definitions as part of the proof
process.

DESIGN CRITERION 6 (TEACHES NEW DEFINITIONS). If students will need to memorize new defini-
tions and rules to use on paper later, the tool should make users practice providing these definitions.

2.3 Ease of Interaction

Full-scale proof assistants have historically targeted users with a graduate-level education and
significant programming experience. Especially in lower-level STEM courses, asking students to
write proofs directly as, e.g., dependently typed programs in Lean or using Coq’s tactics is untenable:
discrete math courses often do not have programming prerequisites nor enough time to teach the
necessary programming skills.

DESIGN CRITERION 7 (SIMPLE LEARNING CURVE). Classroom proof assistants must be approachable
to students (and to instructors in many cases) with no programming background after minimal
training—perhaps no more than a portion of a 50-minute lab or discussion section.

To minimize training, we require an input method that students with no prior experience can
get comfortable with quickly. Avigad [3] anecdotally reports that “Lean’s syntax takes getting used
to" when used in their introductory logic course. Knobelsdorf et al. [26] perform an analysis of the
questions asked by students, noting that the “working with Coq" category of questions was largely
limited to the first half of the course, with questions in the latter half being more content-related.
The authors conclude that “students required surprisingly little training to get used to work with
the theorem prover", but it should be noted that the course was a two-week elective full-time course,
with only 21 participants, which may have selected students with a particular interest in Coq.

EXPERIMENT 7.1. We can measure the time taken to get familiar with the tool by recording, over time,
the proportion of questions asked to instructors/teaching assistants that are about the tool, compared to
questions about the content of the course, as done by Knobelsdorf et al. [26].

2.3.1 Distractions. Along with the steep learning curve, another problem with using full-featured
proof assistants in the classroom is their distracting complexity. Henz and Hobor [19] remark that
“It is amazing how easily one runs into all kinds of didactically-inconvenient topics at awkward
moments" when using Coq, noting that they have to teach concepts they would otherwise elide
from their course so that students don’t get stuck. There are many steps that a proof assistant may
require which is not usually required on paper, and designers should carefully consider how to
hide these steps.

DESIGN CRITERION 8 (CUSTOMIZED ELISION). Classroom proof assistants must not obligate proof
steps that would be elided on paper. Problem designers must be able to customize elisions.
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2.3.2 Satisfaction. One well-attested advantage of using proof assistants in the classroom is that
students enjoy it. One of Avigad [3]’s students “worked on unassigned problems in Lean in order
to procrastinate writing English essays". Henz and Hobor [19] saw that after introducing a proof
assistant, their course had a small increase in sudent opinion of the course, despite students also
rating it as harder. It is important not to lose this sense of fun in designing custom tools for the
classroom.

2.3.3 Robustness. Finally, it should go without saying that tools used by students should be robust
and not prone to errors. Greenberg and Osborn [16] name the IDE’s tendency to crash and mangle
Unicode characters to be a significant problem in their adoption of Coq in the classroom. Perhaps
more importantly for this application though, a bug in a proof checker could disrupt students’
learning of a mental model for how proofs are checked. Billingsley and Robinson [5] noticed that
their proof checker had a bug that would falsely mark some proofs as wrong, but “students could
not tell that this was due to a bug and assumed their proofs were wrong".

DESIGN CRITERION 9 (ROBUSTNESS). Classroom proof assistants should minimize distractions
caused by bugs, and in particular ensure that the computational model is correct to prevent students
learning an incorrect computational model.

EXPERIMENT 9.1. We can ask the user to rate their agreement with the statement “bugs in the proof
tool hindered my ability to complete assignments" to check the robustness of the tool.

2.4 Context of use

Proof assistants designed for research can be difficult to set up, especially in a classroom envi-
ronment. Historically, proof assistants user interfaces are often emacs-based, and require tricky
combinations of keyboard shortcuts. Teachers wanting to teach math courses do not want to have
to teach their students emacs, especially if the course is not part of a computer science course.

This setup barrier hampered early attempts [35] to introduced proof assistants into the classroom,
but now Proofweb [21], JsCoq [13], ProofBuddy [22], and the Natural Number Game [4], among
others, all provide web interfaces for the prover they are based off of to make installation and setup
easier.

DEsIGN CRITERION 10 (Easy SETUP). Installation and setup of the tool should be as straightforward
as possible, so that students and instructors’ time are not wasted on setup. A web interface which
requires no installation is ideal.

While these tools provide the ability for students to work independently, it is important too
that they provide support for teachers using these tools in their class. This includes the ability for
teachers to set their own exercises, track students’ progress, and present ideas using the tool.

DESIGN CRITERION 11 (CLASSROOM INTEGRATION). To simplify the job of course staff needing to
record grades for proof problems, a classroom proof assistant should provide easy-to-use automatic
graders that can integrate with software used to run classes and distribute grades.

3 LEARNING OBJECTIVES AND SCAFFOLDING VS SUPPORT

As well as ensuring that a classroom proof assistant meets our design criteria, we also need to make

sure that our proof assistant’s design is appropriate to its learning objectives. In particular, whether

a skill is scaffolded or supported (section 2.2) will depend on the learning objectives for that skill.
There are three broad categories of skill:
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(1) The learner does not have this skill, and does not need to learn the skill. This skill may be
an idiosyncrasy of computer proof that you wouldn’t otherwise teach students, or it may
be inconvenient to introduce too early in the course.

These skills should be supported with automated and elided steps. If this skill were scaffolded,
it could lead to distractions (section 2.3.1), or it could create a learning curve that is too
steep (criterion 7).

(2) This skill is one of the learning objectives of the course. The student doesn’t have the skill
at the start of the course, so will need help, but the student should be able to use the skill
without help by the end of the course.

These skills should be scaffolded. If one of this skills is not transferring to pen-and-paper ??,
it is an indication that this skill is supported, not scaffolded.

(3) The learner already has this skill, and does not need to practice using it. It may be a tedious
skill, or it could distract the user from skills in category (2) that they are trying to learn.
These skills should be also be supported.

When designing a classroom proof assistant, therefore, it is important to first consider carefully
what the learning objectives of the assistant are. These objectives may change as the course
continues, for example, an instructor may want to initially elide some skill as in (1), then introduce
it to the students as in (2), and once the students are comfortable with it, provide automation as in
(3) so that they do not waste further time on the skill.

Once we have the learning objectives, it becomes clearer which tools should be scaffolded, and
which should be supported. Scaffolding can be achieved by requiring engagement (criterion 4), using
notation close to the notation expected to be used without the tool (criterion 5), and ensuring users
are learning all the content required to produce the proof (criterion 6). Support can be achieved by
automating and eliding (criterion 8) proof steps that the user does not need to learn.

We will demonstrate this process by considering the design of our work-in-progress classroom
proof assistant, the Hazel Prover.

4 THE HAZEL PROVER
4.1 Context for the Hazel Prover

We are working on a classroom proof assistant for Discrete Mathematics (EECS 203) at the University
of Michigan. EECS 203 is a lower-level undergraduate computer science course required for students
wishing to major in computer science that covers mathematical foundations of computer science.
This is paired with an introduction to elementary proof techniques including mathematical and
structural induction.

We plan to begin by focusing on the part of the course that teaches functions and recurrences
(defined equationally) on numbers, sequences, trees, and graphs. We want students taking our
course to become comfortable with recursive definitions and inductive reasoning about properties
of recursive definitions.

Our proof assistant is built on Hazel [33], a web-based live functional programming environ-
ment that has been deployed into the classroom at the Universtiy of Michigan. The Hazel Editor
introduces gradual structure editing, an approach to keyboard-driven structure editing that elimi-
nates syntax errors entirely, instead automatically correcting the entered syntax by inserting holes
and tracking delimiter matching obligations in a visual “backpack”, while otherwise supporting
standard keyboard-driven editing affordances. Hazel programs can either be evaluated using the
live evaluator or using a single-step evaluator (similar to the evaluator in DrRacket [12]), in which
users can view an evaluation trace.
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We are now looking to extend this single-step evaluator with symbolic reasoning so that it can be
used to prove that two expressions always evaluate to the same value, even when these expressions
are quantified over variables. Some of this reasoning will involve proof by induction, either over
natural numbers, over lists, or over Hazel’s custom recursive data types.

4.2 Induction

In the Hazel Prover, we want to allow students to produce proofs by induction over natural numbers,
lists, or Hazel’s abstract data types. Students learning how to reason inductively is an explicit
learning goal of the course and thus induction fits into category (2) from section 3. We therefore
want to scaffold induction.

4.2.1 Supporting Induction. In a typical tactic-based proof language, by starting an induction over
some value, each of the cases are automatically written out as goals, with induction hypotheses
also generated automatically. This can save a lot of time writing out long hypotheses, and also
helps users by explicitly telling them at all times what exactly needs to be proved so they don’t
need to keep track.

4.2.2  Scaffolding Induction. We can let the user themselves write out the necessary cases for the
induction (as done by Wemmenhove et al. [43]). This explicit signposting for each case also makes
the structure of the computer proof match written proofs more closely to aid transfer. In order
to guide the user to creating a complete set of cases, the editor can provide feedback for whether
cases are missing or redundant. To meet criterion 1, these errors should be well explained, we could
also provide examples of expressions that are not matched to give the user a hint for what cases to
add. We should also design the interface for induction carefully so that it resembles written proofs
and transfers well to pen-and-paper.

4.3 Calculation and Reduction Steps

There are several steps in a proof that are the same as evaluation in a functional language, for
example, reductions of arithmetic (1 + 1 — 2) or unfolding of function definitions (double(x) —
x % 2). This course is not primarily concerned with teaching small-step reduction semantics, and
small-step reduction therefore fits into category (1). We likely want to support and elide reduction
steps.

4.3.1 Asasupport. A proof assistant could automatically perform any available computation steps,
reducing an expression as much as possible. Many proof languages feature a similar normalization-
by-evaluation strategy, where proof goals are automatically evaluated as far as they can be evaluated
before the next step of a proof. Automatic normalization could confuse students who are not
expecting it, so instead we will highlight expressions that can be reduced, and allow users to select
and fully reduce these expressions.

4.3.2  As ascaffold. If we wanted to specifically teach small-step programming language semantics,
we could ask students to write out what the next step of evaluation would be, instead of letting the
computer calculate it.

4.4 Axiomatic Rewrites

Proof steps with symbolic terms cannot always be evaluated, such as using the commutativity
of addition (x + y — y + x). The verbosity of large numbers of axiomatic rewrites can serve as a
distraction from the overall structure of a proof. For example, the structure of an induction can get
drowned out by large numbers of rewrites that need to be found in between induction cases. Thus
we want to provide our users with an SMT-based automated support for axiomatic rewrites.
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4.4.1  As a support. SMT solvers, or other equational rewrite proof generators [39] can be used
to try to automatically verify rewrites steps a user wants to take. It is important not to be too
permissive with this, for example, we do not want students to be able to solve exercises complete
exercises by just rewriting them to true.

4.4.2  As a scaffold. Tools for teaching logic often provide users with a way to explore the possibly
axioms they can use. In order to ensure that students understand how scaffolds have been applied,
some tools also require students to write out the result of applying an axiom.
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