
Filling Typed Holes with Live GUIs

Cyrus Omar
University of Michigan
Ann Arbor, MI, USA
comar@umich.edu

David Moon
University of Michigan
Ann Arbor, MI, USA
dmoo@umich.edu

Andrew Blinn
University of Michigan
Ann Arbor, MI, USA
blinnand@umich.edu

Ian Voysey
Carnegie Mellon University

Pittsburgh, PA, USA
iev@cs.cmu.edu

Nick Collins
University of Chicago

Chicago, IL, USA
nickmc@uchicago.edu

Ravi Chugh
University of Chicago

Chicago, IL, USA
rchugh@cs.uchicago.edu

Abstract

Text editing is powerful, but some types of expressions are
more naturally represented and manipulated graphically.
Examples include expressions that compute colors, music,
animations, tabular data, plots, diagrams, and other domain-
specific data structures. This paper introduces live literals, or
livelits, which allow clients to fill holes of types like these by
directly manipulating a user-defined GUI embedded persis-
tently into code. Uniquely, livelits are compositional: a livelit
GUI can itself embed spliced expressions, which are typed,
lexically scoped, and can in turn embed other livelits. Livelits
are also uniquely live: a livelit can provide continuous feed-
back about the run-time implications of the client’s choices
even when splices mention bound variables, because the
system continuously gathers closures associated with the
hole that the livelit is filling. We integrate livelits into Hazel,
a live hole-driven programming environment, and describe
case studies that exercise these novel capabilities. We then
define a simply typed livelit calculus, which specifies how
livelits operate as live graphical macros. The metatheory of
macro expansion has been mechanized in Agda.

CCS Concepts: • Software and its engineering → Gen-

eral programming languages.

Keywords: live programming, macros, typed holes, GUIs

ACM Reference Format:

Cyrus Omar, David Moon, Andrew Blinn, Ian Voysey, Nick Collins,

and Ravi Chugh. 2021. Filling Typed Holes with Live GUIs. In Pro-

ceedings of the 42nd ACM SIGPLAN International Conference on

Programming Language Design and Implementation (PLDI ’21), June

20ś25, 2021, Virtual, Canada. ACM, New York, NY, USA, 15 pages.

https://doi.org/10.1145/3453483.3454059

Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for third-

party components of this work must be honored. For all other uses, contact

the owner/author(s).

PLDI ’21, June 20ś25, 2021, Virtual, Canada

© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8391-2/21/06.

https://doi.org/10.1145/3453483.3454059

1 Introduction

Text-based program editors are flexible and powerful user
interfaces, so it is little wonder that they remain dominant
decades after the teletype. However, textual user interfaces
are not the best tool for every computational job.
Consider, as a simple example, a record type classifying

RGBA-encoded colors. It is possible to select a particular
color by entering an expression of this type in a text editor,
e.g. { r: 57, g: 107, b: 57, a: 92 }. The problem with
this de facto textual user interface for color selection is that it
offers no live feedback about which color has been expressed
and limited editing affordances for choosing a different color.
Analagous critiques apply to strictly textual user interfaces
for countless other data structures, e.g. audio filters, vector
graphics, board game states, tabular numeric data, geospatial
data, neurobiological circuits, and mathematical diagrams.

Practitioners in domains where manipulating data of types
like these is a central activity have largely eschewed general-
purpose programming environments in favor of specialized
graphical end-user applications, e.g. image and video editors,
music composition software, level design tools, and bespoke
GUIs written by lab technicians. This is in large part because
these applications take seriously the need for live feedback,
domain-specific non-textual data representations, and di-
rect manipulation affordances, e.g. checkboxes, sliders, color
palettes, visual timelines, interactive plots, and maps.

The tragedy is that these applications have limited support
for abstraction and composition. It is difficult, for example,
to bind a color to a variable for use in multiple locations in
an otherwise directly constructed game map, or to define
functional combinators to compute portions of an otherwise
directly constructed musical composition. Some applications
include ad hoc abstraction mechanisms for the most com-
mon such use cases, e.g. named color swatches, but users
cannot themselves define new affordances, either program-
matic or graphical, nor compose affordances in ways that the
application developer did not anticipate. For example, users
cannot make even simple changes like replacing a numeric
text box with a slider, much less more ambitious changes
like importing an alternative visual interface for expressing
geospatial data queries into a civic database front-end.

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

511

http://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3453483.3454059
https://doi.org/10.1145/3453483.3454059

PLDI ’21, June 20ś25, 2021, Virtual, Canada Cyrus Omar, David Moon, Andrew Blinn, Ian Voysey, Nick Collins, and Ravi Chugh

This paper aims to bridge the gap between programmatic
and direct manipulation user interfaces by designing a pro-
gramming environment that is able to surface a GUI when
entering an expression of a type for which it is useful, while
retaining full support for symbolic program manipulation
and the abstraction and composition mechanisms available
in modern general-purpose languages, both in the spaces
between these GUIs and compositionally within these GUIs.

1.1 Background

We are not the first to integrate GUIs into programming.
The prior work most relevant to this paper is the Graphite
system for Eclipse for Java, demonstrated in Fig. 1a [37].
Graphite allows a library provider to associate a GUI, called
a palette, with a type (via a Java class annotation), here Color.
Wherever an expression of this type is needed, i.e. wherever
there is a hole of this type (as determined by Eclipse’s online
parser and typechecker), the environment offers the client
the option, via the code completion menu, to generate it us-
ing the palette. Once the user presses Enter to indicate that
the interaction is finished, the palette generates a Java ex-
pression to fill the hole, here new Color(57, 107, 57, 235).
Several other systems, such as the mage system for Jupyter
notebooks [24] behave analagously. Projectional editing, the
visual macro system in Racket [3], and a number of other
designs also confront this general problem of integrating
GUIs with symbolic code in broadly similar ways.
Omar et al. [37] evaluated Graphite by surveying 473 de-

velopers and Kery et al. [24] evaluatedmage by interviewing
9 developers. Both studies found that participants viewed
the proposed mechanism favorably and would use a suitable
GUI some or all of the time. This and other prior work also
collectively showcase a wide variety of use cases [3, 24, 37],
and the Graphite survey solicited dozens of additional use
cases from participants, which the authors systematically
taxonomize [37]. We take these extensive empirical findings
as evidence for, and a showcase of, the value of this broad
class of mechanisms for integrating GUIs with code.

1.2 Contributions

We turn our attention in this paper to a number of fundamen-
tal technical deficiencies that limit both GUI providers and
clients using these prior mechanisms. To address these, we
introduce a system of live literals, or livelits, demonstrated
in Fig. 1b. Livelits are unique in achieving all of the follow-
ing properties. (Sec. 6 describes which subset of these are
achieved by prior systems, including those just mentioned.)

Decentralized Extensibility. Providers define livelits in
libraries. Clients invoke livelits by name. Livelit names, e.g.
$color, are prefixed by $ (pronounced łlitž), to distinguish
them from variables.We call this decentralized extensibility to
distinguish it from systems that are not extensible or that can
only be extended via editor extensions or editor generation.

Persistence. Livelit invocations are expressions, i.e. they are
persistent elements of the syntax tree. They operate as graph-
ical literals, rather than as the ephemeral code generation
GUIs of Graphite andmage. We define a pure model-view-
update-expand architecture (a variation on Elm’s model-
view-update architecture [11]) where only the model needs
to be persisted. The dynamic meaning of a livelit is deter-
mined by a macro expansion step.

Compositionality. Livelit GUIs can embed sub-expressions,
which we call splices (after Omar and Aldrich [33]). Fig. 1b
demonstrates splicing: the RGBA components are each splice
editors, so the client can define a variable, baseline, to relate
the color components (here, to explore greens by offsetting
the green component past the baseline) and use a slider livelit
inline to specify the alpha component.

Crucially, composition is governed by a binding discipline
that ensures (1) capture avoidance, i.e. that variables that
the client uses in splices, like baseline, are lexically scoped
to the livelit invocation site (so they cannot inadvertently
capture expansion-internal bindings, which can therefore be
left abstract); and (2) context independence, i.e. that the
livelit can be invoked and operate in any lexical context (so
the client need not worry about naming conflicts or manage
hidden library dependencies). This binding discipline is a
form of łmacro hygienež [2, 9, 33], though note that we take
a particularly restrictive approach to hygiene compared to,
for example, the Racket macro system [14]: new binding and
control flow constructs intentionally cannot be expressed to
allow clients to understand splices as function parameters
(and indeed this is how they are internally handled).

Parameterization. Livelits can also take parameters directly,
forming parameterized families. For example, $slider in
Fig. 1b is parameterized by the slider’s bounds. Parameters
operate like splices, differing in that they can be partially
applied in livelit abbreviations. For example, Fig. 1b partially
applies $slider to 0 and 100 to define a $percent slider.

Typing. Each livelit must specify an expansion type, and
parameters and splices must also specify types, so livelits are
compatible with type-driven development. Together with the
binding discipline, this allow clients to reason abstractly, i.e.
without inspecting the expansion or livelit implementation.

Liveness. Uniquely, livelits can evaluate splices throughout
the editing process (i.e. in a live manner [45]) to provide
feedback related to run-time behavior. For example, in Fig. 1b,
displaying the selected color requires evaluating the RGBA
component splices to numeric values. Evaluation occurs in a
run-time environment (i.e. closure) determined by leaving
the hole being filled by the livelit temporarily unfilled and
then evaluating using a two-phased variant of the semantics
for Hazelnut Live [35]. Live evaluation is supported even for
livelits that appear inside a function: multiple function calls
can lead to multiple closures that the client selects between.

512

Filling Typed Holes with Live GUIs PLDI ’21, June 20ś25, 2021, Virtual, Canada

(a) Prior Work: Graphite [37]

(b) This Paper: Livelits are live and compositional

(c) Case Study: Grading with Livelits

Figure 1. Introductory Examples

Outline. Sec. 2 introduces livelits from the perspective of
client programmers. Sec. 3 then considers the livelit provider’s
perspective by introducing livelit definitions with a detailed
example. Sec. 4 defines the typed livelit calculus. We have
mechanically specified the central mechanism, livelit expan-
sion, and proven the associated metatheorems in Agda. This
calculus serves to capture the essential nature of livelits inde-
pendent of the particularities of syntax, GUI frameworks, and
other orthogonal design details, because we believe livelits
can be integrated into a wide variety of programming sys-
tems. Sec. 5 provides a more detailed account of our imple-
mentation of livelits. Our primary implementation, used in
the screenshots in the paper, is integrated into Hazel, a live
functional programming environment designed around hole-
driven development. We have also prototyped livelit editing
within a standard text editor. Additionally, we discuss fac-
tors that must be considered when integrating livelits into
languages with side effects. Sec. 6 compares livelits to related
work using the design properties outlined above as a rubric.
We conclude in Sec. 7 after a discussion of present limitations
and several directions for future work.

2 Livelits by Example

In this section, wewill detail the livelits mechanism byway of
two domain-specific case studies: a course grade assignment
case study in Sec. 2.1 and an image transformation case
study in Sec. 2.5.3. These case studies have been implemented
in Hazel, a browser-based live programming environment
for a variant of Elm [10]. Elm is an industrial pure typed
functional language in the ML family used for client-side
web development. We assume basic familiarity with ML.

2.1 Case Study: Grading with Livelits

Consider this familiar scenario: an instructor needs (1) to
record numeric grades for various assignments and exams,
and (2) to visualize and perform various computations with
these numeric grades in order ultimately to assign final letter
grades. (In fact, this case study is not contrived: one author
is using Hazel to compute grades this semester.)
The most common end-user application for this task is

the spreadsheet, because it allows an instructor to (1) record
grades using a natural tabular interface, (2) visualize this data
in one of a finite number of plot styles, and (3) perform ba-
sic computations, with results updated live. However, these
affordances are limited. It is difficult to package common
operations into reusable libraries, interact with the data us-
ing domain-specific visualizations, and perform complex,
unanticipated operations (e.g. preparing the data in an id-
iosyncratic format demanded by the university registrar).

General-purpose programming languages can handle these
scenarios, but users lose the ability to directly manipulate
data and visualizations and receive live (in-editor) feedback.
Livelits are able to address this tension. Fig. 1c shows

a Hazel program where the instructor alternates between
programmatic and direct manipulation in several situations.

First, the instructor defines a value grades that records the
grades for each student using a livelit, $dataframe, that im-
plements a tabular user interface. The formula bar allows the
selected cell to be filled with an arbitrary Hazel expression,
here a floating point expression that adds together individ-
ual problem scores, one of which is expressed using another
livelit, $slider. The table itself displays not the expression
itself but rather its value, 80., just as in a spreadsheet.

513

PLDI ’21, June 20ś25, 2021, Virtual, Canada Cyrus Omar, David Moon, Andrew Blinn, Ian Voysey, Nick Collins, and Ravi Chugh

Next, the instructor computes averages for each student
by applying compute_weighted_averages, a helper function
defined in a library (not shown) shared between courses.

After that, the instructor wants to łeyeballž reasonable let-
ter grade cutoffs by directly manipulating a domain-specific
livelit, $grade_cutoffs, that provides draggable łpaddlesž su-
perimposed on a live visualization of the distribution of
averages, which is provided as a livelit parameter. The value
of cutoffs is a labeled 4-tuple containing each cut-off.
Finally, the instructor programmatically assigns grades

to students based on these cutoffs by calling assign_grades

and format_for_university, again shared functions.

2.2 Livelit Expansion

Livelit invocations are expressions that are given meaning
by expansion. For example, the expansion of Fig. 1c is:

1 let q1_max = 36. in

2 let grades = Dataframe (

3 ["A1", "A2", "A3", "Midterm", "Final"],

4 [("Andrew", [q1_max +. 24. +. 20.,

5 92., 83.5, 95., 88.]),

6 ("Cyrus", [61., 64., 98., 70., 85.]),

7 ("David", [75., 81., 73., 82., 79.]),

8 (* ... *)]) in

9 let averages = compute_weighted_averages

10 grades weights in

11 let cutoffs = (.A 86., .B 76., .C 67., .D 48.)

12 in format_for_university

13 (assign_grades averages cutoffs)

The client can inspect this expansion in Hazel via a toggle
(not shown). Ideally, however, reasoning about types and
binding should not require the client to inspect the expansion
nor the livelit implementation. After all, function clients
do not need to look inside function bodies to reason about
types and binding. Instead, in the words of Reynolds [43],
łtype structure is a syntactic discipline for maintaining levels
of abstractionž. Livelits maintain this discipline by several
means, described next in Sec. 2.3-2.4.

2.3 Expansion Typing

Livelit definitions declare an expansion type. The declarations
of the livelits in Fig. 1c, eliding their implementations, are:

livelit $dataframe at Dataframe {...}

livelit $grade_cutoffs(averages: List(Float)) at

(.A Float , .B Float , .C Float , .D Float) {...}

livelit $slider (min: Int) (max: Int) at Int {...}

The expansion type of $dataframe is Dataframe, which clas-
sifies tabular floating point data together with string row
and column names (see the expansion above). The expansion
type of $grade_cutoffs is a labeled product of grade cutoffs
(field labels are written .label rather than label: in Hazel).
Hazel displays the information in the livelit declaration when
the cursor is on the livelit’s name, just as it displays typing
information in other situations (not shown) [38].

2.4 Compositionality

Livelit invocations are compositional: they can embed sub-
expressions in the form of parameters and splices.

2.4.1 Parameters. Livelit can declare a finite number of
parameters of specified types. For example, $grade_cutoffs
above declares one parameter, the averages to be plotted,
of type List(Float). Parameters are applied using function
application notation as seen in Fig. 1c or using the pipelining
(i.e. reverse function application) operators, <| and |>, which
allow multiple livelits to form dataflows (not shown).
Livelit abbreviations can partially apply parameters. For

example, we can partially apply the first parameter of $slider
to define a parameterized unsigned slider livelit:

let $uslider = $slider 0 in ...

Only livelits with no remaining parameters can be invoked,
so writing $uslider in expression position will display as
a łmissing livelit parameterž error. In Hazel, erroneous ex-
pressions are automatically placed inside holes and do not
prevent other parts of the program from evaluating [35]. A
livelit invocation can also indicate that no expansion is avail-
able with a custom error message, e.g. due to non-sensical
bounds, which is also displayed to the user (not shown).

2.4.2 Splices. Spliced sub-expressions, or splices, appear
directly inside the livelit GUI. Splices can be filled with Hazel
expressions of any form, including other livelit invocations.
For example, each cell in the $dataframe GUI in Fig. 1c has
a corresponding splice. The formula bar at the top allows
the user to edit the splice corresponding to the selected cell,
and all of Hazel’s editing affordances are available when the
client does so. Unlike parameters, the number of splices can
change as the user interacts with the livelit, e.g. when adding
or removing rows or columns in a $dataframe.

The livelit provides an expected type for each splice when
it is created. For example, the splices for the row and column
keys in Fig. 1c have expected type String, and the remaining
cells have expected type Float. Hazel displays and uses the
expected type when the cursor is on the splice [38].

2.4.3 Binding Discipline. Ensuring that clients can rea-
son about binding while leaving expansions abstract requires
enforcing two key properties: capture avoidance and context

independence [2, 9, 33].
Capture Avoidance. Splices and parameters are passed

into the expansion as function arguments, so they cannot
capture any bindings internal to the expansion. All bindings
are lexically scoped to the livelit invocation site.
Consider an alternative where splices could directly ap-

pear anywhere within the expansion, e.g. in the body of a
generated function or let binding. Naïvely, this could cause
inadvertent capture of the bound variables in the expansion
by a free variable in the parameter or splice. For example,
consider a livelit that generates an expansion of the following
seemingly innocuous form:

514

Filling Typed Holes with Live GUIs PLDI ’21, June 20ś25, 2021, Virtual, Canada

Figure 2. Case Study: Image Transformation. The image shown is determined based on the selected closure.

let len = strlen <splice1 > in

if len > 0 then Some (<splice2 > + len) else None

Here, <splice2> appears under the binding of len. If the
client has filled <splice2> with an expression that refers to a
client-side binding of len, these references would naïvely be
captured. This would not occur in <splice1>, because the let
is not recursive. This breaks abstraction and is notoriously
difficult to debug, both for the livelit provider, who has no
way to predict which variables a client will use, and the client,
who does not know which variables the provider used.

To avoid this situation, parameters and splices must be
placed in the expansion in a capture-avoiding manner: vari-
ables in splices always refer to the bindings visible to the
client, rather than bindings that are hidden inside the expan-
sion. In other macro systems, e.g. that of Omar and Aldrich
[33], capture avoiding substitution is used. To simplify rea-
soning about live evaluation, discussed below, we take an
even more restrictive approach by passing splices in as func-
tion arguments. In an eagerly evaluated language, this en-
sures that splice evaluation is not conditional on computa-
tions invisible to the client (such as the length check above),
and it also ensures that evaluation will not inadvertently
occur multiple times or not occur at all.
The trade-off is that this prevents the expression of new

binding constructs and even control flow constructs as livelits.
We take this as a strength, in that it simplifies reasoning for
client programmers. However, this is an independent design
decision: more permissive designs that nevertheless maintain
the critical capture avoidance property are possible.
Context Independence. The example expansion above

used a library function, strlen. Naïvely, this expansionwould
break if placed in client contexts where strlen is not bound,
or bound to an unexpected value. To avoid requiring clients
to determine and satisfy these invisible dependencies, the
livelits mechanism enforces context independence: generated
expansions are valid in any context. Dependencies are bound
relative to the livelit definition site (see Sec. 3.2.5).

2.5 Live Evaluation

Livelits have the ability to evaluate a splice or a parameter in
order to provide better feedback about run-time behavior to
the client. The $dataframe livelit uses this facility to display
the evaluation result for each cell, like a spreadsheet. The
$grade_cutoffs livelit uses this facility to plot the grades,
which were passed in as a parameter, on the number line.

2.5.1 Closure Collection. The subtlety is that evaluation
in Hazel is defined for closed expressions as usual, but pa-
rameters and splices can be open, i.e. refer to surrounding
variables. To provide a environment that binds these vari-
ables, Hazel performs closure collection in two phases.
In the first phase, proto-closure collection, Hazel replaces

each livelit with a uniquely numbered hole and then eval-
uates the program using the semantics for evaluating pro-
grams with holes developed by Omar et al. [35]. Evaluation
proceeds around these holes, producing a result containing
corresponding hole closures, i.e. holes with environments.

For example, there is one closure for $dataframe in Fig. 1c.
It contains the value of q1_max and the other variables in
scope. These values can be used to evaluate splices that use
these variables, such as the cell selected in Fig. 1c.
Similarly, the closure for $grade_cutoffs in Fig. 1c in-

cludes the necessary averages variable, but its value depends
on grades, which is determined by $dataframe. If we stop af-
ter proto-closure collection, no useful value will be available:
averageswill be indeterminate, because $dataframe has been
replaced with a hole [35]. For this reason, there is a second
phase of closure collection, closure resumption, where any
livelit holes in the collected livelit closures are resumed, i.e.
the hole is filled with the expansion and evaluation resumes.

2.5.2 Indeterminate Results. Even after closure resump-
tion, some elements of the closuremay remain indeterminate,
e.g. due to holes that are not filled with livelits. When a livelit
requests an evaluation result, it must be able to handle these
indeterminate results. For example, if there were missing

515

PLDI ’21, June 20ś25, 2021, Virtual, Canada Cyrus Omar, David Moon, Andrew Blinn, Ian Voysey, Nick Collins, and Ravi Chugh

grades, then $grade_cutoffs would have degraded function-
ality: it would display only the list elements that are values
on the timeline, skipping indeterminate elements. We will
return to how this occurs in Sec. 3.2.3.

2.5.3 Case Study: Live Image Filters. Our next case study
considers the situation where multiple closures are collected,
and the workflows it enables.
We interviewed a photographer who described a typical

workflow: they use the Lightroom application to apply a
set of adjustments across all photos in a collection before
making individual adjustments. Many photographers do this
one photo at a time, though this photographer had recently
learned how to use Lightroom’s saved presets to apply adjust-
ments to multiple photos at once. However, they remained
dissatisfied by the workflow. They wanted to be able to see
how the shared settings affected multiple photos as they
tweaked them, without having to save and reapply the pre-
set. They also wanted to be able to change the applied preset
even after making individual adjustments. Finally, they ex-
pressed interest in parameterizing presets, and in automating
parts of the post-production process.
Motivated by this interview, we prototyped a collection

of photo filter livelits. One of these, $basic_adjustments, is
demonstrated in Fig. 2. This livelit contains two splices of
type Int, one to adjust the contrast, and the other to adjust
the brightness. In this example, we have filled those splices
with $percent, but as above we could enter any expression
of type Int, e.g. a variable. The livelit shows a live preview
of the transformed image. The expansion generates calls to
a browser image processing framework, not shown.
This livelit is used within a function, classic_look, that

creates a łpresetž filter. This function is mapped over a list
of images (loaded by URL) at the bottom of the figure. The
provided URL is passed into to livelit as a parameter.
Because the livelit appears inside a function applied (by

map) twice, there are now two closures associated with the
livelit. Hazel allows the programmer to select between the
closures when the cursor is on the livelit expression via the
sidebar toggle, shown in the middle of Fig. 2. This allows
the client to see how the filter being designed will affect
a number of example images by quickly toggling between
closures. The underlying expansion remains abstract, i.e. it
refers to the image via the url variable.

We showed this and similar examples to the photographer
we had interviewed. They expressed enthusiasm for this ap-
proach despite having only limited programming experience
(with Python). They made the fair point that it would take
substantial effort to match Lightroom’s breadth of filters,
but stated that this approach could be more powerful than
Lightroom’s point-and-click interface while retaining many
of its benefits (specifically mentioning sliders). Although this
was only a single interview, it is consistent with the body of
evidence summarized in Sec. 1.1.

3 Livelit Definitions

We will now take the perspective of a livelit provider. Fig. 3
defines $color from Fig. 1b, which is our prototypic example
of a livelit definition. We omit certain incidental details and
use unimplemented syntactic sugar, including Haskell-style
do notation [30] and quasiquotation [5], for presentation.

Livelit definitions are scoped and packaged like any other
definition. Each definition consists of a declaration and an
implementation. In Hazel, a łtemplatež declaration and imple-
mentation is generated as soon as the user types łlivelit ž.

3.1 Livelit Declarations

Line 2 of Fig. 3 is $color’s declaration, which defines its name
and its expansion type, Color, defined on Line 1. Both are
required. Livelit parameters can also optionally appear here
as shown in the declarations in Sec. 2.3. The declaration is
part of the client interface, as discussed in Sec. 2.3-2.4.1.

3.2 Livelit Implementations

The curly braces delimit the livelit’s implementation, which
is not intended to be seen by clients. Each livelit implemen-
tation must define types Model and Action, values init, view,
update, and expand with the signatures specified in Fig. 1b,
and a context, which is a listing of definition-site bindings
that the livelit can make use of as described below. All of
these are included in the generated template. These consti-
tute a variation on the pure functional model-view-update
architecture popularized by Elm [11]. We add a fourth com-
ponent, expansion generation. In addition, we use a monadic
framework (a la Haskell [30]) to provide a pure interface
between the livelit and the editor: monadic commands, like
new_splice discussed below, are executed by the editor, and
do notation provides syntactic sugar for monadic bind.

3.2.1 Model. The state of a livelit’s GUI is determined by
its model value. Line 3 of Fig. 3 specifies the corresponding
model type, here a labeled 4-tuple of splice references, one for
each of the four splices that appear in the GUI in Fig. 1b. The
model is how the GUI state is persisted in the syntax tree, so
the system requires that the model type supports automatic
serialization (so functions cannot appear in models).

The init value on Line 8 determines the value of themodel
when the livelit is first invoked in the editor. It is a command
in the UpdateCmd monad, further discussed in Sec. 3.2.4, that
returns the initial model value after generating four new
splices using the new_splice command:

new_splice : (Typ , Maybe(Exp))

-> UpdateCmd(SpliceRef)

This command creates a splice of the given type and, option-
ally, its initial contents. It returns a splice reference, which
uniquely identifies that splice. In this section, bolded types
are defined in the standard library. The Typ and Exp types
encode the syntax of Hazel’s types and expressions and we
use quasiquotation, e.g. `0`, as the introduction forms [5].

516

Filling Typed Holes with Live GUIs PLDI ’21, June 20ś25, 2021, Virtual, Canada

1 type Color = (.r Int , .g Int , .b Int , .a Int)

2 livelit $color at Color {

3 type Model = (.r SpliceRef , .g SpliceRef ,

4 .b SpliceRef , .a SpliceRef)

5

6 context { }

7

8 let init : UpdateCmd(Model) = do

9 r <- new_splice(`Int `, Some(`0`))

10 g <- new_splice(`Int `, Some(`0`))

11 b <- new_splice(`Int `, Some(`0`))

12 a <- new_splice(`Int `, Some(`100`))

13 return (r, g, b, a)

14

15 type Action =

16 | ClickOn(Color)

17

18 let view : Model -> ViewCmd(Html(Action)) =

19 fun model -> do

20 (* determine a color to display *)

21 r_res <- eval_splice(model.r)

22 g_res <- eval_splice(model.g)

23 b_res <- eval_splice(model.b)

24 a_res <- eval_splice(model.a)

25 let cur_color : Color =

26 case (r_res , g_res , b_res , a_res)

27 | (Some(Val(IntLit(r))),

28 Some(Val(IntLit(g))),

29 Some(Val(IntLit(b))),

30 Some(Val(IntLit(a)))) ->

31 Some((r, g, b, a))

32 | _ ->

33 (* indeterminate color shown as X *)

34 None

35 in

36

37 (* generate splice editors *)

38 let size = FixedWidth (20) in

39 r_editor <- editor(model.r, size)

40 g_editor <- editor(model.g, size)

41 b_editor <- editor(model.b, size)

42 a_editor <- editor(model.a, size)

43

44 (* ... now we can render the UI ... *)

45

46 let update :

47 Model -> Action -> UpdateCmd(Model) =

48 fun model (ClickOn c) -> do

49 set_splice(model.r, IntLit(c.r))

50 set_splice(model.g, IntLit(c.g))

51 set_splice(model.b, IntLit(c.b))

52 set_splice(model.a, IntLit(c.a))

53 return model

54

55 let expand : Model -> (Exp , List(SpliceRef)) =

56 fun model -> (`fun r g b a -> (r, g, b, a)`,

57 [model.r, model.g, model.b, model.a])

58 }

Figure 3. Example Livelit Definition

To ensure context independence, the system checks that
the splice type and initial content are valid assuming only
the parameters and explicitly specified context on Line 6.
Here, the context is empty because Int is a built in type
and the initial expressions are integer literals. We use an
explicit context, rather than implicitly capturing all bindings
at the definition site, to ensure that private bindings are not
unintentionally leaked to clients [33].

3.2.2 Action. Line 15 defines the Action type for the $color
livelit, which specifies a single user-initiated action: clicking
on a color using the right half of Fig. 1b. Actions are emit-
ted from event handlers (e.g. click handlers) defined in the
computed view, Sec. 3.2.3, and actions are consumed by the
update function, Sec. 3.2.4, causing a change to the model.

3.2.3 View. The view function computes the view given
the model and access to the commands in the ViewCmdmonad
(which is distinct from the UpdateCmdmonad). The computed
view is a value of type Html(Action). This type provides a
simple immutable encoding of an HTML element, where
the type parameter is the type of actions that are emitted by
event handlers that can be attached to elements, e.g. on_click
and so on. We elide the details of the particular user interface
in Fig. 1b, but note that livelit implementations can them-
selves invoke other livelits, e.g. the view function could use
livelits for expressing user interface widgets and layouts (not
shown). Instead, we focus on three mechanisms exposed by
ViewCmd: live evaluation, splice editors, and result rendering.

Live Evaluation. As discussed in Sec. 2.5, the view can
depend on the result of evaluating a splice or a parameter
under the closure the client has selected. (Parameters, not
shown in this example but discussed in Sec. 2.4.1, operate like
splices and have type SpliceRefwithin the livelit definition.)
The interface between the view and the live evaluator is via
the following command:

eval_splice : SpliceRef -> ViewCmd(Maybe(Result))

The None case arises when evaluation is not possible, e.g.
because no closures are collected or because no value has
been collected for a variable used in the splice. In practice,
there is an implicit hole at the end of each cell in Hazel, so
livelits will have at least one closure containing results for at
least the top-level bindings. Function argument values may
not be available if that function has not been applied.
If available, Result distinguishes two possibilities:

type Result = Val(Exp) | Indet(Exp)

The Val case ariseswhen evaluation produces a value, whereas
the Indet case arises when evaluation results in an indeter-
minate expression, i.e. an expression that cannot be fully
evaluated due to holes in critical positions [35].
Lines 26-34 determine a color to display in the color pre-

view if all four splices evaluate to integers. Otherwise, there
is not enough information to determine a color. The livelit
indicates this situation by disabling the color preview.

517

PLDI ’21, June 20ś25, 2021, Virtual, Canada Cyrus Omar, David Moon, Andrew Blinn, Ian Voysey, Nick Collins, and Ravi Chugh

Livelits can attempt to offer feedback even when the re-
sult is indeterminate, because indeterminate expressions
might nevertheless contain useful information. For example,
a livelit that previews a sequence of notes as audio might be
able to handle a list of notes where certain notes are missing,
i.e. holes, by playing silence. This behavior is highly domain-
specific, so each livelit provider must decide whether and
how indeterminate results are supported.

Splice Editors. The view includes an editing area for each
splice. These editors must support all of Hazel’s editing ser-
vices. To support this, the view function can request an editor
with a given dimension (in character units) for a given splice:

editor : (SpliceRef , Dim) -> ViewCmd(Html(a))

The result is an opaque Html(a) value that the remainder
of the function can place where needed. When the livelit is
rendered, this part of the tree is under the control of Hazel.
The Dim parameter currently supports only a fixed character
width, with overflow causing scrolling, but in the future we
plan to offer to offer more flexible layout options.

Result Rendering. Some livelit views needs to include a
rendered evaluation result. For example, each of the cells in
the $dataframe livelit in Fig. 1c show the evaluation result
for the corresponding cell. Only the formula bar at the top
is an editor. To support this, the view function can use the
result_view command, which mirrors the editor command:

result_view : (SpliceRef , Dim)

-> ViewCmd(Maybe(Html(a)))

3.2.4 Update. When the user triggers an event in a livelit
view, it emits an Action. The system responds by calling the
update function to determine how this action should affect
the model and, in some cases, the splices.
In Fig. 3, we see that the $color livelit responds to the

ClickOnColor action by invoking the set_splice command
to overwrite the current splices with integer literals deter-
mined based on which color the user clicked on:

set_splice : (SpliceRef , Exp) -> UpdateCmd ()

As with new_splice described in Sec. 3.2.1, the system main-
tains context independence by checking the expression against
the splice type and only allows use of the specified context.
When the model is updated, a new view is computed.

The system then performs a diff between the old and new
view in order to efficiently perform the necessary imperative
updates to the editor’s visual state. Changes to splices can
also cause the view to be recomputed, because the view
might evaluate the splices. The UpdateCmd monad does not
itself have the ability to request evaluation (eval_splice),
because the model should not depend directly on which
closure the user has selected. Of course, the view might emit
result-dependent actions when appropriate.

3.2.5 Expansion. The ultimate purpose of a livelit is to
fill the hole where it appears by generating an expansion, i.e.

an expression of the expansion type, here Color. The expand

function determines the expansion given the model. The two
are necessarily distinct: the model encodes the GUI state,
and so usually tracks ephemeral widget state, like which tab
is active in a tabbed GUI, as well as splice references, which
refer only indirectly to the spliced expressions themselves,
discussed below. This information is not needed at run-time
as part of the expansion. Only the model is persisted when
a Hazel program is saved, because the expansion can be
regenerated by calling expand whenever needed.
The expansion can include spliced expressions, but the

system does not make these expressions available directly
as values of type Exp. Instead, the expansion must treat
splices parametrically. In particular, expand returns an en-
coded parameterized expansion, of type Exp, paired with a list
of SpliceRefs (which can come from both splices and param-
eters as discussed above). The parameterized expansion is a
function (here curried) that takes an argument for each listed
SpliceRef. That argument is of the corresponding splice type,
which was provided when the splice was initialized. The re-
turn type of the parameterized expansion is the expansion
type. So here, the parameterized expansion for $color must
be a function of type Int -> Int -> Int -> Int -> Color

because the splices in the splice list were each of type Int.
This parameterization strategy makes enforcing the bind-

ing discipline described in Sec. 2.4.3 straightforward. Context
independence is maintained by allowing the parameterized
expansion to depend only on bindings given in the explicit
context, which the system maintains bound relative to the
definition site. The splices can depend only on the client site
typing context. The use of function application ensures that
splices are capture avoiding.

Note that Hazel does not statically check the definition of
expand to ensure that the encoded parameterized expansion
has the necessary type in the specified context. Instead, the
parameterized expansion is only validated at each livelit in-
vocation site, with errors reported to the client. A typed quo-

tation system as in, e.g., MetaOCaml [25], could be adapted
to allow for definition-site verification, as discussed in [33],
but note that the type of the quotation depends on the type
of each splice in the splice list, which has arbitrary length in
general (e.g. the number of splices in the $dataframe livelit de-
pends on how many rows and columns the user has added).

4 A Simply Typed Livelit Calculus

In order to specify the semantics of livelits independently of
the specifics of the Hazel environment and the web platform,
we now specify a simply typed livelit calculus.

Fig. 4 specifies the syntax of the livelit calculus. Programs
are written as unexpanded expressions, 𝑒 , which are expanded
to external (or expanded) expressions, 𝑒 , before being elabo-
rated to internal expressions, 𝑑 , for evaluation. All three sorts
are classified by the same types, 𝜏 .

518

Filling Typed Holes with Live GUIs PLDI ’21, June 20ś25, 2021, Virtual, Canada

Typ 𝜏 ::= 𝜏1 → 𝜏2 | 𝜏1 × 𝜏2 | 1 | 𝜏1 + 𝜏2 | 𝑡 | 𝜇 (𝑡 .𝜏)

UExp 𝑒 ::= 𝑥 | 𝜆𝑥.𝑒 | 𝑒1 𝑒2 | ... | LM
𝑢 | $𝑎⟨𝑑model; {𝜓𝑖 }𝑖<𝑛⟩

𝑢

EExp 𝑒 ::= 𝑥 | 𝜆𝑥.𝑒 | 𝑒1 𝑒2 | ... | LM
𝑢

IExp 𝑑 ::= 𝑥 | 𝜆𝑥.𝑑 | 𝑑1 𝑑2 | ... | LM
𝑢
𝜎

Splice 𝜓 ::= 𝑒 : 𝜏

Figure 4. Syntax of types, 𝜏 , unexpanded expressions, 𝑒 ,
external expressions, 𝑒 , and internal expressions, 𝑑 . Here, 𝑥
ranges over variables, 𝑢 over hole names, and $𝑎 over livelit
names.Wewrite {𝜓𝑖 }𝑖<𝑛 for a finite sequence of𝑛 ≥ 0 splices,
and 𝜎 for finite substitutions of 𝑛 ≥ 0 internal expressions
for variables, [𝑑𝑖/𝑥𝑖]𝑖<𝑛 . We elide standard forms related to
product, sum, and recursive types [18].

We include partial functions, products, sums, and recursive
types, all in their standard form [18], but this specific type
structure is not critical. Any language expressive enough to
encode its own abstract syntax would be a suitable basis.

4.1 Background: External and Internal Language

The external and internal languages are straightforward
adaptations of the external and internal languages of Hazel-
nut Live, a typed lambda calculus that assigns static and dy-
namic meaning to programs with holes, notated LM𝑢 where
𝑢 is a hole name [35]. We omit non-empty holes (which in-
ternalize type inconsistencies [36]) and type holes (which
operate like the unknown type from gradual type theory
[36, 44]). These mechanisms are orthogonal to livelits and
are included in our implementation.
External expressions, e, are governed by a typing judge-

ment of the form, Γ ⊢ 𝑒 : 𝜏 , where the typing context, Γ, is a
finite set of typing assumptions of the form 𝑥 : 𝜏 [18].

The internal language is a contextual type theory [32], i.e.
the typing judgement is of the form Δ; Γ ⊢ 𝑑 : 𝜏 where the
hole context Δ is a finite set of hole typing assumptions of the
form 𝑢 :: 𝜏 [Γ] which mean that hole 𝑢 must be filled with an
expression of type 𝜏 under Γ. We need a hole typing context
only for the internal language because, although hole names
are assumed unique in the external language, they can be
duplicated during evaluation of internal expressions.
External expressions elaborate to internal expressions, 𝑑 ,

according to the declarative elaboration judgement Γ ⊢ 𝑒 {

𝑑 : 𝜏 ⊣ Δ. (Hazelnut Live specifies elaboration algorithmi-
cally [35].) The main purpose of elaboration is to initialize
the substitution 𝜎 on each hole closure, LM𝑢𝜎 , which takes the
form [𝑑𝑖/𝑥𝑖]𝑖<𝑛 and serves to capture the substitutions that
occur around the hole during evaluation. The key rule for
elaboration at type 𝜏 is:

Elab-Hole

Γ ⊢ LM𝑢 { LM𝑢id(Γ) : 𝜏 ⊣ 𝑢 :: 𝜏 [Γ]

The substitution is initially the identity substitution, id(Γ),
i.e. the substitution that maps each variable in Γ to itself,

because no substitutions have yet occurred. For example,

⊢ (𝜆𝑥.LM𝑢) 5 { (𝜆𝑥.LM𝑢[𝑥/𝑥]) 5 : nat ⊣ 𝑢 :: num[𝑥 : nat]

During evaluation, 𝑑 ⇓ 𝑑 ′, the closure’s substitution ac-
cumulates the substitutions that occur. For example, the
internal expression above evaluates as follows:

(𝜆𝑥 .LM𝑢[𝑥/𝑥]) 5 ⇓ LM𝑢[5/𝑥]

Rather than restating the remaining rules, we simply state
the key governing metatheorems and defer to the prior work
and our Agda mechanization (Sec. 4.2.3) for the details [35].

Elaboration preserves typing.

Theorem 4.1 (Typed Elaboration). If Γ ⊢ 𝑒 : 𝜏 then Γ ⊢ 𝑒 {

𝑑 : 𝜏 ⊣ Δ for some 𝑑 and Δ such that Δ; Γ ⊢ 𝑑 : 𝜏 .

Evaluation of a closed well-typed expression with holes
results in a final (i.e. irreducible) expression of the same type.

Theorem 4.2 (Preservation). If Δ; · ⊢ 𝑑 : 𝜏 and 𝑑 ⇓ 𝑑 ′ then

𝑑 ′ final and Δ; · ⊢ 𝑑 ′ : 𝜏 .

4.2 Expansion

The novelty of the livelit calculus is entirely in its handling
of unexpanded expressions, 𝑒 , which are given meaning by
typed expansion to external expressions, 𝑒 , according to the
judgement Φ; Γ ⊢ 𝑒 { 𝑒 : 𝜏 defined in Fig. 5. Unexpanded
expressions mirror external expressions but for the presence
of livelit invocations. The rules for the mirrored forms like
EVar and EFun, both shown in Fig. 5, are straightforward.

4.2.1 Livelit Contexts. Livelit definitions are collected in
the livelit context, Φ, which maps livelit names $𝑎 to livelit
definitions of the following form:

livelit $𝑎 at 𝜏expand {𝜏model;𝑑expand}

Here, 𝜏expand is the expansion type, 𝜏model is the model type,
and 𝑑expand is the expansion function, which generates an
expansion given a model. We omit the logic related to view
computations and actions, which are tied to a particular UI
framework and have only indirect semantic significance.

Definition 4.3 (Livelit Context Well-Formedness). A livelit
context Φ is well-formed if and only if for each livelit def-
inition, livelit $𝑎 at 𝜏expand {𝜏model;𝑑expand} ∈ Φ, we have
⊢ 𝑑expand : 𝜏model → Exp.

Here, Exp stands for a type whose values isomorphically
encode external expressions. The isomorphism ismediated in
one direction by the encoding judgement 𝑒 ↓ 𝑑 and the other
by the decoding judgement 𝑑 ↑ 𝑒 . Any scheme is sufficient,
so we leave it as a matter of implementation. The simplest
approach is to define Exp as a recursive sum type, with one
arm for each form of external expression (cf. [34]).
For simplicity, we assume that the livelit context is pro-

vided a priori and therefore that the expansion function is
already closed and fully elaborated. In practice, the livelit

519

PLDI ’21, June 20ś25, 2021, Virtual, Canada Cyrus Omar, David Moon, Andrew Blinn, Ian Voysey, Nick Collins, and Ravi Chugh

EVar

𝑥 : 𝜏 ∈ Γ

Φ; Γ ⊢ 𝑥 { 𝑥 : 𝜏

ELam

Φ; Γ, 𝑥 : 𝜏in ⊢ 𝑒 { 𝑒 : 𝜏out

Φ; Γ ⊢ 𝜆𝑥.𝑒 { 𝜆𝑥 .𝑒 : 𝜏in → 𝜏out
· · ·

ELivelit

livelit $𝑎 at 𝜏expand {𝜏model;𝑑expand} ∈ Φ

⊢ 𝑑model : 𝜏model

𝑑expand 𝑑model ⇓ 𝑑encoded 𝑑encoded ↑ 𝑒pexpansion
⊢ 𝑒pexpansion : {𝜏𝑖 }𝑖<𝑛 → 𝜏expand

{Φ; Γ ⊢ 𝑒𝑖 { 𝑒𝑖 : 𝜏𝑖 }𝑖<𝑛

Φ; Γ ⊢ $𝑎⟨𝑑model; {𝑒𝑖 : 𝜏𝑖 }𝑖<𝑛⟩
𝑢
{ 𝑒pexpansion {𝑒𝑖 }𝑖<𝑛 : 𝜏expand

Figure 5. Expansion

context would be controlled by a definition form in the lan-
guage that allows the definition to itself invoke livelits. This
would require a staging mechanism, because we need to eval-
uate expansion functions in prior definitions to be able to
expand subsequent definitions. There are a number of ways
to support the necessary staging in practice, e.g. via explicit
staging primitives [13], by requiring that these definitions
appear in separately compiled packages [33], or by using live
programming mechanisms such as those in Hazel to evaluate
łup tož each definition before proceeding [35].

4.2.2 Livelit Expansion. Unexpanded expressions include
livelit invocations:

$𝑎⟨𝑑model; {𝜓𝑖 }𝑖<𝑛⟩
𝑢

Here, $𝑎 names the livelit being invoked. Livelits can be
understood as filling holes, so 𝑢 identifies the hole that is,
conceptually, being filled. The current state of the livelit is
determined by the current model value, 𝑑model, together with
the splice list, {𝜓𝑖 }𝑖<𝑛 . Each splice 𝜓𝑖 is of the form 𝑒𝑖 : 𝜏𝑖 ,
where 𝑒𝑖 is the spliced expression itself (unexpanded, so it
may contain other livelits) and 𝜏𝑖 is the type of that splice,
as determined when the livelit definition first requested the
splice (as discussed in Sec. 3.2.1). Note that we do not formally
model the edit actions that change the model or splice list
here; we focus on a single snapshot of the editor state. We
leave an action semantics for livelits, following the Hazelnut
action semantics [36], as future work.

Rule ELivelit performs livelit expansion. Its premises, in
order, operate as follows:

1. Lookup. The first premise looks up the livelit definition
in the livelit context.

2. Model Validation. The second premise checks that the
model value, 𝑑model, is of the specified model type, 𝜏model.

3. Expansion.The third premise applies the expansion func-
tion, 𝑑expand, to the model value, 𝑑model, producing the
encoded parameterized expansion, 𝑑encoded, which, by the
definitions and theorems given above, is of type Exp.

4. Decoding. The fourth premise decodes 𝑑encoded, produc-
ing the parameterized expansion, 𝑒pexpansion. The isomor-
phism between encodings and external expressions en-
sures that decoding cannot fail.

5. Expansion Validation. The fifth premise checks that
parameterized expansion is a function that returns a value
of the expansion type, 𝜏expand, when applied (in curried
fashion, though this is not critical) to the splices, whose
types, {𝜏𝑖 }𝑖<𝑛 , are given in the splice list. Validation can
fail, in which case expansion fails. (In Hazel, validation
failure is instead marked by a non-empty hole and an
appropriate error message is shown.)
We ensure that the parameterized expansion is context
independent, i.e. that it cannot depend on the particu-
lar bindings available in the call site typing context, Γ,
by requiring that the parameterized expansion be closed.
Consequently, any necessary helper functions used in the
expansion must be provided by the client via a splice.
In Sec. 3, we discussed how the use of an explicit definition
site context eliminates this client burden. The explicit
context can formally be modeled as just a value (tupled,
typically) that can be passed as an additional argument to
the parameterized expansion alongside the splices, so we
omit it from the calculus, but see [33] for a full treatment.

6. Splice Expansion.The sixth premise inductively expands
each of the spliced expressions in the same context as the
livelit invocation itself.

The conclusion of the rule then applies the parameterized
expansion to the expanded splices. By applying the splices as
arguments, we maintain capture avoidance ś splices cannot
capture variables bound internally to the expansion because
beta reduction performs capture-avoiding substitution.
The typed expansion process is governed by the follow-

ing metatheorem, which establishes that the expansion is
indeed an external expression of the indicated type (i.e. the
expansion type, in the case of livelit invocations).

Theorem 4.4 (Typed Expansion). If Φ; Γ ⊢ 𝑒 { 𝑒 : 𝜏 then

Γ ⊢ 𝑒 : 𝜏 .

When composed with the Typed Elaboration theorem and
the type safety of the internal language, we achieve end-to-
end type safety: every well-typed unexpanded expression
expands to a well-typed external expression, which in turn
elaborates to a well-typed internal expression, which in turn
evaluates in a type safe manner.

4.2.3 AgdaMechanization. Wehavemechanically proven
these theorems using the Agda proof assistant, building on
the Agda mechanization of Hazelnut Live [35]. This is the
first mechanization of the literal macro expansion process
(previous work on textual literal macros had only paper
proofs [33]). The mechanization is available in the artifact
and online at the following URL:

https://github.com/hazelgrove/hazelnut-livelits-agda/

520

https://github.com/hazelgrove/hazelnut-livelits-agda/

Filling Typed Holes with Live GUIs PLDI ’21, June 20ś25, 2021, Virtual, Canada

4.3 Live Feedback via Closure Collection

In order to support live feedback, a livelit needs to be able
to ask the system to evaluate expressions under one of the
closures associated with the livelit. This mechanism was
introduced by example in Sec. 2.5.1. In this section, we will
formalize the process of efficiently collecting closures.

4.3.1 Proto-Environment Collection. We begin by gen-
erating an alternative expansion, called the cc-expansion,
where each livelit invocation expands to an empty hole ap-
plied to its splices. In other words, a hole appears in place of
the parameterized expansion (but not splices). On the side,
we generate a cc-context, Ω, that maps each livelit hole to the
elaboration of its parameterized expansion, 𝑢 ↩→ 𝑑pexpansion.
The key rule for cc-expansion, Φ; Γ ⊢cc 𝑒 { 𝑒 : 𝜏 ⊣ Ω, is:

CCLivelit

{Φ; Γ ⊢cc 𝑒𝑖 { 𝑒𝑖 : 𝜏𝑖 ⊣ Ω𝑖 }𝑖<𝑛
Φ; Γ ⊢ $𝑎⟨𝑑model; {𝑒𝑖 : 𝜏𝑖 }𝑖<𝑛⟩

𝑢
{ 𝑒pexpansion {𝑒 ′𝑖 }𝑖<𝑛 : 𝜏expand

⊢ 𝑒pexpansion { 𝑑pexpansion : {𝜏𝑖 }𝑖<𝑛 → 𝜏expand ⊣

Ω = ∪𝑖<𝑛Ω𝑖 ∪ {𝑢 ↩→ 𝑑pexpansion}

Φ; Γ ⊢cc $𝑎⟨𝑑model; {𝑒𝑖 : 𝜏𝑖 }𝑖<𝑛⟩
𝑢
{ LM𝑢 {𝑒𝑖 }𝑖<𝑛 : 𝜏expand ⊣ Ω

We then elaborate and evaluate the cc-expansion. The re-
sult will contain some number of hole closures for each livelit
hole.We call these the proto-closures and their environments
the proto-environments for that livelit hole.

Definition 4.5 (Proto-Closure Collection). If Φ; · ⊢cc 𝑒 {
𝑒 : 𝜏 ⊣ Ω and ⊢ 𝑒 { 𝑑 : 𝜏 ⊣ Δ and 𝑑 ⇓ 𝑑 ′ and 𝑢 ∈ dom(Ω)

then protoenvs
Φ
(𝑒;𝑢) = {𝜎 | LM𝑢𝜎 ∈ 𝑑 ′}.

4.3.2 Closure Resumption. A proto-environment for a
livelit hole might itself contain a proto-closure for another
livelit hole, which is problematic for the reasons detailed in
Sec. 2.5.1. Consequently, the second step of closure collection,
called closure resumption, is to fill any livelit holes that ap-
pear in the proto-environments for other livelit holes. We do
so by filling them using the parameterized expansions gath-
ered in Ω and then resuming evaluation where appropriate.
Formally, this involves the hole filling operation J𝑑1/𝑢K𝑑2 for
Hazelnut Live (which derives from the metavariable instan-
tation operation of contextual modal type theory [32, 35]).
This operation fills every closure for hole 𝑢 in 𝑑2 with 𝑑1. Un-
like substitution, hole filling is not capture-avoiding. Instead,
the environment on each of these closures is applied to 𝑑1 as
a substitution, i.e. the delayed substitutions captured in the
environment are realized. In this case, however, the param-
eterized expansion is necessarily closed due to the context
independence discipline we maintain in Rule ELivelit, so
hole filling amounts to syntactic replacement.

Formally, we begin by defining an operation fillΩ (𝜎)which
acts on proto-environments to fill the livelit holes.
Definition 4.6 (Livelit Hole Filling).

1. fillΩ ([𝑑1/𝑥1, . . . , 𝑑𝑛/𝑥𝑛]) =
[fillΩ (𝑑1)/𝑥1, . . . , fillΩ (𝑑𝑛)/𝑥𝑛]

2. fillΩ (𝑑) = J𝑑pexpansion/𝑢K𝑢↩→𝑑pexpansion∈Ω𝑑

This first step may cause certain expressions to become
non-final, because the filled hole is no longer blocking eval-
uation. We therefore define an operation resume(𝜎) that
resumes evalution for all closed expressions in 𝜎 . (The only
open expressions that might remain are the initial variables
from the identity substitution generated by elaboration. Some
closures appear under binders in the final result, so these
variables will not have yet recorded a substitution.)
Definition 4.7 (Environment Resumption).

1. resume([𝑑1/𝑥1, . . . , 𝑑𝑛/𝑥𝑛]) =

[resume(𝑑1)/𝑥1, . . . , resume(𝑑𝑛)/𝑥𝑛]

2. resume(𝑑) = 𝑑 ′ if FV(𝑑) = ∅ and 𝑑 ⇓ 𝑑 ′

3. resume(𝑑) = 𝑑 if FV(𝑑) ≠ ∅

Finally, we can produce the final set of environments by
filling and resuming the proto-environments.

Definition 4.8 (Environment Collection). If Φ; · ⊢cc 𝑒 { 𝑒 :
𝜏 ⊣ Ω then

envsΦ (𝑒;𝑢) = {resume(fillΩ (𝜎)) | 𝜎 ∈ protoenvs
Φ
(𝑒;𝑢)}

This same fill and resume operation can be used to avoid re-
computation when evaluating the fully expanded version of
the user’s program. If the editor has already performed envi-
ronment collection, then it can simply continue fromwhere it
left off by filling and resuming the remaining top-level livelit
holes (those that do not appear in a proto-environment).
The correctness of the mechanisms described in this sec-

tion rest on the fact that evaluation commutes with hole
filling in the pure setting.

Theorem 4.9 (Post-Collection Resumption). If Φ; · ⊢cc 𝑒 {
𝑒cc : 𝜏 ⊣ Ω and ⊢ 𝑒cc { 𝑑cc : 𝜏 ⊣ Δ and 𝑑cc ⇓ 𝑑 ′

cc and

resume(fillΩ (𝑑
′
cc)) = 𝑑1 and Φ; · ⊢ 𝑒 { 𝑒full : 𝜏 and ⊢ 𝑒full {

𝑑full : 𝜏 ⊣ Δ and 𝑑full ⇓ 𝑑2 then 𝑑1 = 𝑑2.

Proof. The key observation is that filling the livelit holes in
the cc-expansion gives the full expansion, i.e. fillΩ (𝑑cc) =

𝑑full. Resumption is simply evaluation for closed expressions.
By commutativity of hole filling, established in the prior
work [35], we can delay hole filling until 𝑑cc has first been
evaluated to 𝑑 ′

cc. □

In an imperative language with non-commutative side
effects, resumption is not sound. We conjecture that one can
specify an alternative evaluation mode where the full expan-
sion of each livelit invocation is evaluated in the order that
corresponding livelit hole is encountered during evaluation,
with the closure recorded in a memory. This would ensure
that side effects happen in the same order and only once.
Alternatively, an imperative language might use a different
mechanism to make environments available to livelits, e.g.
by environment snapshotting a la Lamdu [29]. This is more
limited in situations where a livelit invocation appears in a

521

PLDI ’21, June 20ś25, 2021, Virtual, Canada Cyrus Omar, David Moon, Andrew Blinn, Ian Voysey, Nick Collins, and Ravi Chugh

function which has yet to be applied (where collected livelit
closures essentially capture the function’s closure).

Livelits invocations in branches that are not taken or that
appear under unused variables do not have closures collected
for them with our approach (though in practice there is an
implicit łtrailing holež after each cell in Hazel which means
the latter situation is infrequent). Livelit invocations that
determine which of several branches are taken prevent sub-
stitutions conditional on those branches from being recorded
in downstream closures because resumption operates only
within the proto-closures. This design gives clients the abil-
ity to control closure collection in branches that are not of
interest (and therefore control the cost of closure collection),
but may sometimes cause unexpected behavior. We leave
further exploration of this design space to future work.

5 Implementation

Implementing livelits requires tight integration between a
rich editor, a type checker, and a live evaluator capable of
evaluating incomplete programs and gathering hole closures.

5.1 Hazel

Hazelnut Live is the foundation of the Hazel programming
environment, and Hazel has support for all of the necessary
mechanisms, so it was natural to choose Hazel for our pri-
mary implementation. Hazel is implemented in OCaml and
compiled to JavaScript using the js_of_ocaml compiler [39].
The livelit definition mechanism described in Sec. 3 is

implemented in Hazel, albeit without some of the syntactic
sugar in Fig. 3. This, together with the fact that Hazel lacks
a mature GUI widget libraries as of this writing, makes com-
plex examples tedious to implement within Hazel, so we also
added the ability to define livelits using JavaScript or OCaml.
These are loaded when Hazel is compiled. As Hazel evolves,
we expect to need to define such łprimitivež livelits less fre-
quently, using them mainly for livelits that would benefit
from access to established JavaScript or OCaml libraries.

Uniquely, every editor state in Hazel is semantically mean-
ingful: it has a type, it can be evaluated, and it can be trans-
formed in a type-aware manner. This implies that livelits
remain fully functional at all times, even when the program
is incomplete or erroneous. Hazel achieves this łgap-freež
liveness guarantee by automatically inserting explicit holes
as necessary while the user edits the program. Formally,
Hazel is a type-aware structure editor [36], rather than a
text editor, although the developers are aiming to maintain
a text-like experience (this effort is orthogonal to our own).
To maintain this guarantee, Hazel inserts empty holes where
there are missing terms, and non-empty holes as markers of
errors. To maintain this invariant in the presence of livelits,
new non-empty holes are needed to mark each of the failure
modes suggested by the premises of the ELivelit rule in
Fig. 5. In particular, non-empty holes mark (1) the invocation

of an unbound livelit; (2) the invocation of a livelit with a
model value of the wrong type; (3) a run-time error during
evaluation of init, update, or expand functions (which would
manifest as run-time holes); (4) expansion validation failure
(i.e. that the parameterized expansion is of the wrong type
given the splice list and expansion type). Errors in view gen-
eration are not considered semantic errors (they display as
error messages where the livelit GUI would have appeared.)

5.2 Text Editor Integration

Livelits do not require the use of a structure editor. We have
also developed a proof-of-concept implementation of livelit
interaction in a textual program editor, Sketch-n-Sketch [21].
The livelit GUI appears in a pop up window when requested
by the user. Interactions with this GUI cause the serialized
model in the text buffer to be changed, which updates the
view. This proof-of-concept is not at feature parity with the
Hazel implementation, but it demonstrates that a syntax-
recognizing text editor [3, 4, 23] is sufficient to support
livelits, albeit with gaps in availability when there are syntax
errors. There are other systems that integrate visual syntax
into an otherwise textual editor as well, notably Dr. Racket’s
recent visual macro system [3], discussed in the next section.

5.3 Layout

Whether implemented in a structure editor or a text editor,
livelits present interesting layout challenges. Hazel uses an
optimizing pretty printer based on the work of Bernardy [6]
to determine layout. This system relies fundamentally on
character counts. Consequently, our implementation asks
each livelit to specify dimensions in terms of character counts
rather than pixels. Livelits can be laid out either as inline
livelits, like $slider, which are one character high and ap-
pear inline with the code, or as multi-line livelits, which
occupy up to the full width and a specified number of lines.

One might also consider a number of other layout options,
e.g. inline-block literals a la Wyvern [34], pop-up livelits,
livelits pinned to sidebars, and livelits that are rendered on
a separate canvas or document while still formally being
located within an underlying functional program.
This latter option would be particularly interesting for

end-user programming scenarios: users with limited pro-
gramming experience could interact with a collection of
livelits laid out separately in the popular łdashboardž style,
without necessarily even being aware that their interactions
are actually edits to an underlying typed functional program.

5.4 Integration into Imperative Languages

Our focus in this paper was on pure languages. Side effects
pose a challenge on two fronts.

If they occur in a livelit implementation, as is possible for
livelits implemented using Hazel’s support for Javascript-
based livelits, then the state exists at edit-time. To ensure that
the GUI’s state persists and remains valid between reloads, it

522

Filling Typed Holes with Live GUIs PLDI ’21, June 20ś25, 2021, Virtual, Canada

may then be necessary to persist the relevant portions of the
edit-time state alongside the program, as in Smalltalk sys-
tems [15], or else provide for a state re-initialization protocol
that is called when a program is re-loaded from persistent
memory. It may also be necessary to more carefully control
the access that a livelit has to the editor itself: many par-
ticipants in the Graphite survey indicated that they did not
want palettes, which were able to make network requests at
edit-time, to be able to access proprietary or sensitive source
code [37]. In any case, the expansion should ideally be a pure
function of the model even in an imperative language, or
run as an isolated process each time, to ensure that program
behavior does not depend on expansion-time editor state.

If side effects occur in livelit expansions, then the closure
collection mechanism requires more care to avoid unsound-
ness, as described in Sec. 4.3. In addition, continuous live
evaluation as in Hazel is intrinsically problematic in an im-
perative setting because running code on each keystroke can
cause arbitrary side effects, e.g. network requests or I/O.
These problems are surmountable with suitable compro-

mises, e.g. limiting continuous evaluation for code with ex-
ternal side effects, and we look forward to efforts to integrate
livelits into imperative languages.

6 Related Work

As detailed in Sec. 1.1, the Graphite system developed the
idea of filling typed holes using a type-specific user interface,
and it was the starting point for our work [37]. Subsequent
work on mage further explores this design space [24]. This
prior work engaged in substantial qualitative evaluations,
which due to the fundamental similarities between the two
systems is as relevant to our design as theirs. However, the
prior work left a number of core technical issues unresolved,
as summarized Sec. 1.2. Livelits resolve these in large part
by bringing together ideas from other recent work.

In particular, recentwork on type-specific languages (TSLs)
[34] and typed literal macros (TLMs) [33] explored similar
ideas of user-defined literal forms with support for hygienic
splicing, with the former using type-directed dispatch similar
to Graphite and the latter supporting decentralized exten-
sibility via explicit naming as in our approach. However,
these systems operate in a purely textual setting and have no
support for live feedback. The typed expansion judgement
central to the typed livelit calculus in this paper is structured
similarly to the corresponding judgements in the formal sys-
tems describing TLMs and TSLs, and the reasoning principles
are closely related. However, the approach to capture avoid-
ance we take is both more restrictive and cleaner by its use
of function application rather than direct insertion of splices
(and could perhaps be ported to those formalisms). Splices
also operate quite differently in our work, because they are
placed automatically and structurally delimited in the user
interface, rather than placed by the client and then parsed

out of the text by a custom parser charged with retaining
provenance information. This substantially complicates the
design of splices in that work.
This structural delimitation of splices is reminiscent of

work on language boxes [42], which focused on combining
different notations, primarily textual, using structural delim-
iters inserted explicitly using a special-purpose editor.
Recent work on a interactive visual macro system in Dr.

Racket is quite similar in spirit to our work [3]. However, it
supports only a limited form of splicing via a pop up text ed-
itor that does not support full compositionality as described
here, where livelits can appear within other livelits. Splicing
is not strictly hygienic, though Racket’s scope management
machinery can be used by macros to voluntarily maintain
a binding discipline [14]. There is not any consideration of
typing. Parameterization and partial application is also im-
possible, because invocation is via an editor command rather
than a syntactic mechanism. Finally, there is no support for
liveness: macro evaluation occurs in the editor environment,
not the run-time environment of the program being written,
so splice evaluation would not work correctly (except in triv-
ial cases where the splice was, e.g., a closed expression, or
used only standard library constructs). That said, we conjec-
ture that it is possible to implement many of the mechanisms
we describe in this paper in some form as a layer atop these
existing mechanisms in Dr. Racket.
There has been a long line of research on projectional

editing, where the user edits graphical representations (pro-
jections) of code constructs [26, 31, 40, 41]. Livelits are a form
of projectional editing. Many of the oldest systems offer only
a fixed set of projections and interaction techniques. More re-
cently, language workbenches with support for projectional
editing like Citrus [26] and MPS [47] have made it easier
to define new projectional editors. However, these systems
generate entire editors, whereas livelit definitions are decen-
tralized in libraries and lexically scoped. Furthermore, livelit
definitions are governed by a type and binding discipline.
Finally, livelits are uniquely live, building on hole closure
tracking from Hazelnut Live [35].
A number of notebook systems, including Mathematica,

Jupyter [16], and others, do support the insertion of simple
widgets like sliders that respond live to changes. These sys-
tems inspired our approach but they are not compositional:
only constant values can be constructed, as with Graphite.

Related to projectional editors are a variety of systems that
generate visualizations from code [15, 27, 28, 46]. Livelits
differ from these systems in directionality: visualization sys-
tems generates visualizations from values, whereas livelits
generate expressions where there would otherwise be a hole.

Conal Elliott’s work on tangible functional programming
[12] similarly explored a system allows editing a graphical
representation of code in compositional ways, but the editing
representation itself is fixed as a series of connectedwindows.
Only the visualizations are customizable.

523

PLDI ’21, June 20ś25, 2021, Virtual, Canada Cyrus Omar, David Moon, Andrew Blinn, Ian Voysey, Nick Collins, and Ravi Chugh

The Vital programming environment for Haskell [17] sup-
ports type-specific stylesheets that can be used to create
custom user interfaces for both editing and displaying val-
ues. The editors support splices, called cells, that can con-
tain Haskell code. Results are computed in a live manner,
though there is no support for evaluating incomplete pro-
grams. The visualizations themselves cannot provide live
feedback. Moreover, the system does not enforce any hy-
giene or typing principles: the user is entirely responsible
for syntactic and semantic correctness.

7 Discussion and Conclusion

The arithmetical symbols are written diagrams

and the geometrical figures are graphic formulas.

Ð David Hilbert [22]

Diagrams have played a pivotal role in mathematical thought
since antiquity, indeed predating symbolic mathematics [7].
Popular computing and creative tooling, too, has embraced
visual representation and direct manipulation interfaces for
decades. Programming, however, has remained stubbornly
mired in textual user interfaces. Our hope with this paper is
to demonstrate that principled, mathematically structured
programming is not only compatible with live graphical
user interfaces, but that the combination of these two holds
promise for the future of programming.

This paper’s contributions are in advancing the expressive
power of the mechanism in several directions, most notably
in terms of compositionality and liveness. These technical
contributions are a complement to the empirical findings by
Omar et al. [37] and others. That said, the two case studies
we considered in this paper were motivated by real world
problems. As the implementation matures, we plan to intro-
duce enthusiasts in a wide variety of problem domains to
livelits and continue these empirical evaluations.
Mechanisms for deriving simple livelit definitions from

type definitions, perhaps similar to Haskell’s deriving direc-
tive or the GEC toolkit [1], or from to_string functions [20],
may prove fruitful in the future.

The livelits mechanism as described in this paper operates
only on expressions, but livelits might be useful for generat-
ing other sorts of terms, such as types, patterns, and entire
modules. Prior work on literal macros has explored this [33].
Note that Racket’s visual macro system generates arbitrary
syntax, so it can already be used in this manner, albeit with
no sort-specific semantic guarantees.
The strict binding discipline has, we believe, substantial

benefitsÐprogrammers will inevitably encounter unfamiliar
livelits, and the reasoning principles that we enforce are
likely to help them łreason aroundž the situation. However,
it may be useful in certain circumstances to relax these, with
the editor alerting the user to the unusual situation.

Another direction for future work has to do with pushing
edits from computed results back into livelits. For example, a

slider expands to a number, which may then flow through a
computation. Bidirectional evaluation techniques may allow
the user to edit a number in the result of a computation and
see the necessary change to a slider in the program [8, 19].

Programming and authoring have much in common. Doc-
uments often contain structured information, and programs
are written to manipulate structured information. Another
future direction for livelits is as the basis for a programmable
authoring system, where the non-symbolic elements on the
page are revealed to be code after all, albeit code generated
by a livelit invocation that presents a more natural editing
experience. Taking this further, a networked collection of
these documents could form a powerful computational wiki.
We present this paper as a foundation for such explorations.

Acknowledgements

We thank Pavel Panchekha and anonymous referees at TyDe
2019, POPL 2021 and PLDI 2021 for thoughtful feedback that
has improved this paper. This material is based upon work
supported by the National Science Foundation under Grant
No. 1814900 and 1817145.

References
[1] Peter Achten, Marko C. J. D. van Eekelen, Rinus Plasmeijer, and

Arjen van Weelden. 2004. GEC: A Toolkit for Generic Rapid Pro-

totyping of Type Safe Interactive Applications. In Advanced Func-

tional Programming, 5th International School, AFP 2004, Revised Lec-

tures (Lecture Notes in Computer Science, Vol. 3622). Springer, 210ś244.

https://doi.org/10.1007/11546382_5

[2] Michael D. Adams. 2015. Towards the Essence of Hygiene. In POPL.

457ś469. https://doi.org/10.1145/2676726.2677013

[3] Leif Andersen, Michael Ballantyne, and Matthias Felleisen. 2020.

Adding Interactive Visual Syntax to Textual Code. Proc. ACM Program.

Lang. 4, OOPSLA (2020), 222:1ś222:28. https://doi.org/10.1145/3428290

[4] Robert A. Ballance, Susan L. Graham, and Michael L. Van de Vanter.

1992. The Pan Language-Based Editing System. ACM Trans. Softw. Eng.

Methodol. 1, 1 (1992), 95ś127. https://doi.org/10.1145/125489.122804

[5] Alan Bawden. 1999. Quasiquotation in Lisp.. In Proceedings of the 1999

ACM SIGPLAN Workshop on Partial Evaluation and Semantics-Based

Program Manipulation (PEPM), January 22-23, 1999. Technical report

BRICS-NS-99-1. University of Aarhus, 4ś12.

[6] Jean-Philippe Bernardy. 2017. A pretty but not greedy printer (func-

tional pearl). Proc. ACM Program. Lang. 1, ICFP (2017), 6:1ś6:21.

https://doi.org/10.1145/3110250

[7] Florian Cajori. 1993. A history of mathematical notations. Vol. 1. Courier

Corporation.

[8] Ravi Chugh, Brian Hempel, Mitchell Spradlin, and Jacob Albers. 2016.

Programmatic and Direct Manipulation, Together at Last. In PLDI.

https://doi.org/10.1145/2908080.2908103

[9] William D. Clinger and Jonathan Rees. 1991. Macros That Work. In

POPL. 155ś162. https://doi.org/10.1145/99583.99607

[10] Evan Czaplicki. 2018. An Introduction to Elm. (2018). https://guide.elm-

lang.org/. Retrieved Apr. 7, 2018.

[11] Czaplicki, Evan. 2018. Elm Architecture. (2018). https://guide.elm-

lang.org/architecture/. Retrieved Apr. 7, 2018.

[12] Conal Elliott. 2007. Tangible Functional Programming. In ICFP. https:

//doi.org/10.1145/1291151.1291163

[13] Matthew Flatt. 2002. Composable and compilable macros: you want it

when?. In ICFP. https://doi.org/10.1145/581478.581486

524

https://doi.org/10.1007/11546382_5
https://doi.org/10.1145/2676726.2677013
https://doi.org/10.1145/3428290
https://doi.org/10.1145/125489.122804
https://doi.org/10.1145/3110250
https://doi.org/10.1145/2908080.2908103
https://doi.org/10.1145/99583.99607
https://guide.elm-lang.org/
https://guide.elm-lang.org/
https://guide.elm-lang.org/architecture/
https://guide.elm-lang.org/architecture/
https://doi.org/10.1145/1291151.1291163
https://doi.org/10.1145/1291151.1291163
https://doi.org/10.1145/581478.581486

Filling Typed Holes with Live GUIs PLDI ’21, June 20ś25, 2021, Virtual, Canada

[14] Matthew Flatt. 2016. Binding as sets of scopes. In POPL. https:

//doi.org/10.1145/2837614.2837620

[15] Adele Goldberg. 1984. Smalltalk-80 - the interactive programming

environment. Addison-Wesley.

[16] Philip J. Guo. 2013. Online Python Tutor: embeddable web-based

program visualization for CS education. In The 44th ACM Technical

Symposium on Computer Science Education (SIGCSE). 579ś584.

[17] Keith Hanna. 2002. Interactive visual functional programming. In ICFP.

https://doi.org/10.1145/581478.581493

[18] Robert Harper. 2016. Practical Foundations for Programming Languages

(2nd ed.). https://www.cs.cmu.edu/~rwh/plbook/2nded.pdf

[19] Brian Hempel and Ravi Chugh. 2016. Semi-Automated SVG Program-

ming via Direct Manipulation. In Symposium on User Interface Software

and Technology (UIST).

[20] Brian Hempel and Ravi Chugh. 2020. Tiny Structure Editors for Low,

Low Prices! (Generating GUIs from toString Functions). In IEEE Sym-

posium on Visual Languages and Human-Centric Computing (VL/HCC).

https://doi.org/10.1109/VL/HCC50065.2020.9127256

[21] Brian Hempel, Justin Lubin, Grace Lu, and Ravi Chugh. 2018. Deuce:

A Lightweight User Interface for Structured Editing. In International

Conference on Software Engineering (ICSE).

[22] David Hilbert. 1902. Mathematical problems. Bull. Amer. Math. Soc. 8,

10 (1902), 437ś479.

[23] Joseph R. Horgan and D. J. Moore. 1984. Techniques for Improving

Language-Based Editors. In Proceedings of the ACM SIGSOFT/SIGPLAN

Software Engineering Symposium on Practical Software Development

Environments. ACM, 7ś14. https://doi.org/10.1145/800020.808243

[24] Mary Beth Kery, Donghao Ren, Fred Hohman, Dominik Moritz, Kanit

Wongsuphasawat, and Kayur Patel. 2020. mage: Fluid Moves Between

Code and Graphical Work in Computational Notebooks. In UIST ’20:

The 33rd Annual ACM Symposium on User Interface Software and Tech-

nology. 140ś151. https://doi.org/10.1145/3379337.3415842

[25] Oleg Kiselyov. 2014. The Design and Implementation of BER MetaO-

Caml - System Description. In Proceedings of the 12th International

Symposium on Functional and Logic Programming (FLOPS) (Lecture

Notes in Computer Science, Vol. 8475). Springer, 86ś102. https://doi.

org/10.1007/978-3-319-07151-0_6

[26] A. J. Ko and Brad A. Myers. 2005. Citrus: a language and toolkit

for simplifying the creation of structured editors for code and data.

In Proceedings of the 18th Annual ACM Symposium on User Interface

Software and Technology (UIST). 3ś12. https://doi.org/10.1145/1095034.

1095037

[27] Rainer Koschke. 2003. Software visualization in software maintenance,

reverse engineering, and re-engineering: a research survey. Journal of

Software Maintenance and Evolution: Research and Practice 15, 2 (2003),

87ś109.

[28] Sorin Lerner. 2020. Projection Boxes: On-the-fly Reconfigurable Visu-

alization for Live Programming. In CHI ’20: CHI Conference on Human

Factors in Computing Systems. ACM. https://doi.org/10.1145/3313831.

3376494

[29] Eyal Lotem and Yair Chuchem. 2016. Project Lamdu. http://www.

lamdu.org/. Accessed: 2016-04-08.

[30] Simon Marlow et al. 2010. Haskell 2010 language report. (2010).

https://www.haskell.org/onlinereport/haskell2010

[31] Philip Miller, John Pane, Glenn Meter, and Scott A. Vorthmann. 1994.

Evolution of Novice Programming Environments: The Structure Edi-

tors of Carnegie Mellon University. Interactive Learning Environments

4, 2 (1994), 140ś158. https://doi.org/10.1080/1049482940040202

[32] Aleksandar Nanevski, Frank Pfenning, and Brigitte Pientka. 2008. Con-

textual modal type theory. ACM Trans. Comput. Log. 9, 3 (2008).

https://doi.org/10.1145/1352582.1352591

[33] Cyrus Omar and Jonathan Aldrich. 2018. Reasonably Programmable

Literal Notation. Proceedings of the ACM on Programming Languages

(PACMPL), Issue ICFP (2018).
[34] Cyrus Omar, Darya Kurilova, Ligia Nistor, Benjamin Chung, Alex

Potanin, and Jonathan Aldrich. 2014. Safely Composable Type-Specific

Languages. In ECOOP.

[35] Cyrus Omar, Ian Voysey, Ravi Chugh, and Matthew A. Hammer. 2019.

Live Functional Programming with Typed Holes. Proceedings of the

ACM on Programming Languages (PACMPL), Issue POPL (2019).

[36] Cyrus Omar, Ian Voysey, Michael Hilton, Jonathan Aldrich, and

Matthew A. Hammer. 2017. Hazelnut: A Bidirectionally Typed Struc-

ture Editor Calculus. In POPL.

[37] Cyrus Omar, YoungSeok Yoon, Thomas D. LaToza, and Brad A. Myers.

2012. Active Code Completion. In International Conference on Software

Engineering (ICSE).

[38] Hannah Potter and Cyrus Omar. 2020. Hazel Tutor: Guiding Novices

Through Type-Driven Development Strategies. In Human Aspects

of Types and Reasoning Assistants. https://hazel.org/hazeltutor-

hatra2020.pdf

[39] Gabriel Radanne, Jérôme Vouillon, and Vincent Balat. 2016. Eliom:

A Core ML Language for Tierless Web Programming. In 14th Asian

Symposium on Programming Languages and Systems (APLAS) (Lecture

Notes in Computer Science, Vol. 10017). 377ś397. https://doi.org/10.

1007/978-3-319-47958-3_20

[40] Michael Read and Chris Marlin. 1996. Generating direct manipulation

program editors within the MultiView programming environment.

In Joint Proceedings of the Second International Software Architecture

Workshop (ISAW-2) and International Workshop on Multiple Perspectives

in Software Development (Viewpoints’ 96) at SIGSOFT’96. 232ś236. https:

//doi.org/10.1145/243327.243670

[41] Steven P. Reiss. 1984. Graphical Program Development with PECAN

Program Development Systems. In Proceedings of the ACM SIGSOFT-

/SIGPLAN Software Engineering Symposium on Practical Software De-

velopment Environments. ACM, 30ś41. https://doi.org/10.1145/800020.

808246

[42] Lukas Renggli, Marcus Denker, and Oscar Nierstrasz. 2009. Language

Boxes. In Second International Conference on Software Language Engi-

neering (SLE) (Lecture Notes in Computer Science, Vol. 5969). Springer,

274ś293. https://doi.org/10.1007/978-3-642-12107-4_20

[43] John C. Reynolds. 1983. Types, Abstraction and Parametric Polymor-

phism. In Information Processing 83, Proceedings of the IFIP 9th World

Computer Congress. North-Holland/IFIP, 513ś523.

[44] Jeremy G. Siek and Walid Taha. 2006. Gradual Typing for Functional

Languages. In Scheme and Functional Programming Workshop. http:

//scheme2006.cs.uchicago.edu/13-siek.pdf

[45] Steven L. Tanimoto. 2013. A perspective on the evolution of live

programming. In International Workshop on Live Programming (LIVE).

[46] Jaime Urquiza-Fuentes and J Angel Velázquez-Iturbide. 2004. A survey

of program visualizations for the functional paradigm. In Proc. 3rd

Program Visualization Workshop. 2ś9.

[47] Markus Voelter. 2011. Language and IDE Modularization and Com-

position with MPS. In Generative and Transformational Techniques

in Software Engineering IV, International Summer School, GTTSE 2011,

Braga, Portugal, July 3-9, 2011. Revised Papers (Lecture Notes in Com-

puter Science, Vol. 7680). Springer, 383ś430. https://doi.org/10.1007/978-

3-642-35992-7_11

525

https://doi.org/10.1145/2837614.2837620
https://doi.org/10.1145/2837614.2837620
https://doi.org/10.1145/581478.581493
https://www.cs.cmu.edu/~rwh/plbook/2nded.pdf
https://doi.org/10.1109/VL/HCC50065.2020.9127256
https://doi.org/10.1145/800020.808243
https://doi.org/10.1145/3379337.3415842
https://doi.org/10.1007/978-3-319-07151-0_6
https://doi.org/10.1007/978-3-319-07151-0_6
https://doi.org/10.1145/1095034.1095037
https://doi.org/10.1145/1095034.1095037
https://doi.org/10.1145/3313831.3376494
https://doi.org/10.1145/3313831.3376494
http://www.lamdu.org/
http://www.lamdu.org/
https://www.haskell.org/onlinereport/haskell2010
https://doi.org/10.1080/1049482940040202
https://doi.org/10.1145/1352582.1352591
https://hazel.org/hazeltutor-hatra2020.pdf
https://hazel.org/hazeltutor-hatra2020.pdf
https://doi.org/10.1007/978-3-319-47958-3_20
https://doi.org/10.1007/978-3-319-47958-3_20
https://doi.org/10.1145/243327.243670
https://doi.org/10.1145/243327.243670
https://doi.org/10.1145/800020.808246
https://doi.org/10.1145/800020.808246
https://doi.org/10.1007/978-3-642-12107-4_20
http://scheme2006.cs.uchicago.edu/13-siek.pdf
http://scheme2006.cs.uchicago.edu/13-siek.pdf
https://doi.org/10.1007/978-3-642-35992-7_11
https://doi.org/10.1007/978-3-642-35992-7_11

	Abstract
	1 Introduction
	1.1 Background
	1.2 Contributions

	2 Livelits by Example
	2.1 Case Study: Grading with Livelits
	2.2 Livelit Expansion
	2.3 Expansion Typing
	2.4 Compositionality
	2.5 Live Evaluation

	3 Livelit Definitions
	3.1 Livelit Declarations
	3.2 Livelit Implementations

	4 A Simply Typed Livelit Calculus
	4.1 Background: External and Internal Language
	4.2 Expansion
	4.3 Live Feedback via Closure Collection

	5 Implementation
	5.1 Hazel
	5.2 Text Editor Integration
	5.3 Layout
	5.4 Integration into Imperative Languages

	6 Related Work
	7 Discussion and Conclusion
	References

