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Type systems typically only define the conditions under which an expression is well-typed, leaving ill-typed

expressions formally meaningless. This approach is insufficient as the basis for language servers driving

modern programming environments, which are expected to recover from simultaneously localized errors and

continue to provide a variety of downstream semantic services. This paper addresses this problem, contributing

the first comprehensive formal account of total type error localization and recovery: the marked lambda

calculus. In particular, we define a gradual type system for expressions with marked errors, which operate as

non-empty holes, together with a total procedure for marking arbitrary unmarked expressions. We mechanize

the metatheory of the marked lambda calculus in Agda and implement it, scaled up, as the new basis for Hazel,

a full-scale live functional programming environment with, uniquely, no meaningless editor states.

The marked lambda calculus is bidirectionally typed, so localization decisions are systematically predictable

based on a local flow of typing information. Constraint-based type inference can bringmore distant information

to bear in discovering inconsistencies but this notoriously complicates error localization. We approach this

problem by deploying constraint solving as a type-hole-filling layer atop this gradual bidirectionally typed

core. Errors arising from inconsistent unification constraints are localized exclusively to type and expression

holes, i.e., the system identifies unfillable holes using a system of traced provenances, rather than localized in

an ad hoc manner to particular expressions. The user can then interactively shift these errors to particular

downstream expressions by selecting from suggested partially consistent type hole fillings, which returns

control back to the bidirectional system. We implement this type hole inference system in Hazel.
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1 INTRODUCTION
Modern programming environments provide developers with a collection of semantic services—for

example, type hints, semantic navigation, semantic code completion, and automated refactorings—

that require static reasoning about the type and binding structure of a program as it is being edited.

The problem is that when the program being edited is ill-typed, these semantic services can become

degraded or unavailable [Omar et al. 2017b]. These gaps in service are not always transient. For

example, a change to a type definition might result in type errors at dozens of use sites in a large

program, which might take hours or days to resolve, all without the full aid of these services.

These service gaps are fundamentally rooted in a definitional gap: a type system defined in the

conventional way, e.g., in the tradition of the typed lambda calculus and its derivatives [Pierce

2002], assigns meaning only to well-typed programs. If a type error appears anywhere, the program
is formally meaningless everywhere.
This gap problem has prompted considerable practical interest in (1) type error localization:

mechanisms for identifying the location(s) in a program that explain a type error, and (2) type
error recovery: mechanisms that allow the system to optimistically recover from a localized

type error and continue on to locate other errors and provide downstream semantic services,

ideally at every location in the program and with minimal degradation in service. Essentially all

widely-used programming systems have some support for type error localization, e.g., in compiler

error messages or directly in the editor via markings decorating localized errors. Developers are

known to attend to reported error locations when debugging type errors [Joosten et al. 1993].

Many systems also attempt recovery in certain situations, discussed below. However, type error

localization and recovery mechanisms have developed idiosyncratically, in part as folklore amongst

language and tool implementors. Different type checkers or language servers [Barros et al. 2022;

Bour et al. 2018], even for the same language, localize and recover from type errors in different

ways, with little in the way of unifying theory of the sort that grounds the design of modern type

systems themselves.

Consider, for example, the ill-typed program below, which is shown as presented to the user in

this paper’s version of Hazel [Hazel Development Team 2023], a typed functional dialect of Elm

[Czaplicki and Chong 2013]. Hazel supports local type inference, specified in the well-established

bidirectional style [Dunfield and Krishnaswami 2019; Omar et al. 2017a; Pierce and Turner 2000]:

A type checkerwith no support for error localization or recovery—as students in an undergraduate

course might write—would simply report that this program is ill-typed. A more practical approach,

and one common even in production type checkers, is to localize the first error that causes type-

checking to fail and emit an explanatory error message before terminating. In this example, the

system might report that the variable f located on Line 2 is free, then terminate.

An implementation with support for type error recovery, like Elm’s compiler or OCaml’s merlin

[Bour et al. 2018], would be tasked with continuing past this first error. The general difficulty here

is that there is now missing semantic information, namely the type of f, that the bidirectional type

system as specified would appear to demand in order to proceed, here in order to determine which

type the argument, y, is to be analyzed against. Intuitively, however, it is clear that this knowledge
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is unnecessary to make an error localization decision about y: it is free, so a second error can be

simultaneously localized despite the missing information about f.

To recover further, we might choose to also ignore the bidirectional type system’s demand that

the conditional guard be confirmed to be a boolean expression (because the type of f(y) is also

not well-defined) and continue into its branches, observing that they have inconsistent types, Bool

and Int. There are several ways to localize this error. One approach, taken e.g., by Elm and merlin,

would be to assume, arbitrarily, that one branch is correct, localizing the error to the other branch.

Heuristics have been developed to help make this choice less arbitrary, e.g., by observing recent

editing history [Chuchem and Lotem 2019], or training a machine learning model [Seidel et al. 2017].

A less ad hoc approach, which Hazel takes above, is to localize the inconsistency to the conditional

as a whole, reporting that the problem is that the branch types differ. When the cursor is on this

conditional expression, the Hazel type inspector—a status bar that reports typing information,

including error messages, about the term at the cursor [Potter and Omar 2020]—displays:

This localization decision affects how the system recovers as it proceeds into the let body. If

localization had assumed that the then branch were correct, as for example in merlin, then x : Bool

and an error should be reported on only the second use of x. If the else branch were chosen, then

x : Int and an error would be reported on only the first use of x. In either case, this error might

mislead the programmer if the earlier localization guess was incorrect. If the inconsistency were

localized to the conditional expression as a whole, as in Hazel, then we again confront the problem

of missing type information: x does not have a known type, though it is known to be bound. There

is no definitive type or binding error at either use of x, so we do not report an error in Hazel.

More specifically, we treat x’s type as the unknown a.k.a. dynamic type from gradual typing [Siek

and Taha 2006]. In any of these cases, we would like to be able to recover and localize the type

inconsistency on the string addend because the + operator is integer addition in Hazel. Recovering

from this error, we can assume that both branch types in the second conditional will have Int type,

so no error is marked on the conditional as a whole.

This informal exercise demonstrates that (1) localization choices can vary, particularly with

regard to the extent to which they make ad hoc guesses about intent; (2) when combined with error

recovery, one localization decision can influence downstream localization decisions; and (3) error

recovery necessitates reasoning without complete knowledge about types and binding. We argue

that such semantic subtleties call for a rigorous theoretical treatment of these topics.

Section 2 of this paper develops the first comprehensive type-theoretic formulation of type error

localization and recovery, called the marked lambda calculus. We bring together three individually

well-studied ideas: (1) bidirectional typing, which specifies how type and binding information

flows from type annotations to expressions [Dunfield and Krishnaswami 2019; Pierce and Turner

2000], (2) gradual typing, which offers a principled approach for recovering from missing type

information [Siek and Taha 2006; Siek et al. 2015], and (3) non-empty holes, which function as

syntactic membranes marking erroneous terms [Omar et al. 2017a], operationalizing the “red

lines” that an editor displays. The marked lambda calculus achieves total error recovery, meaning

that every syntactically well-formed program sketch (a program structure with, optionally, empty

holes [Solar-Lezama 2013]) can be marked, i.e., its errors can be simultaneously localized, such

that the resulting program has a well-defined type and binding structure. We establish this and

other properties as metatheorems that we mechanize in the Agda proof assistant. As we define

the calculus, we consider a number of situations where error localization decisions are subtle

and conclude by defining some extensions of the intentionally minimal core calculus, e.g., with
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destructuring patterns and System F-style polymorphism, that serve as case studies of the general

approach that we hope will be adopted by language designers defining practical type systems.

Section 3.1 describes our own effort in this direction, which is to scale up the marked lambda

calculus as the new basis for Hazel, a typed functional programming environment that fully solves

the semantic gap problem: Hazel’s semantic services are available as long as the program sketch

is syntactically well-formed. Prior work has separately considered mechanisms for maintaining

syntactically well-formed program sketches during development: manual hole insertion (as in

Agda [Norell 2007], GHC Haskell [HaskellWiki 2014], Idris [Brady 2013], and others), syntax error

recovery [de Medeiros et al. 2020; Sorkin and Donovan 2011], and structure editing [Omar et al.

2017a; Teitelbaum and Reps 1981]. Hazel has both a textual syntax and a structure editor [Moon

et al. 2023; Omar et al. 2017a]. As a secondary contribution, Section 3.2 describes how (1) total

marking can resolve the problem of undefined behavior in the Hazelnut structure editor calculus,

and (2) integrating marking with typed structure editing allows us to incrementally re-mark only

where necessary based on the edit location and the type and binding structure.

The developments in Section 2 support the intuition (remarked upon by Pierce and Turner

[2000] and Dunfield and Krishnaswami [2019]) that bidirectional typing pairs well with type

error localization and recovery because information flows systematically and locally through the

tree. However, many functional languages including Elm, OCaml and Haskell feature constraint-

based type inference, where constraints are gathered globally. For type systems where inference

is decidable, this is powerful, but it is also notorious for complicating error localization, because

inconsistencies can arise through a confluence of constraints originating from any number of

locations [Wand 1986].

For example, in the following Hazel expression (ignoring the error on the type hole for the

moment), bidirectional error localization does not mark any uses of x as erroneous because a type

for x cannot locally be inferred (the let-bound expression is an empty hole, which has unknown

type). However, by gathering constraints from the three uses of x and attempting to unify, we see

that the type hole is unfillable. Rather than arbitrarily privileging one of these uses, as is the case

in languages like OCaml (and which has led to the development of complex heuristics, e.g., using

machine learning [Seidel et al. 2017], to avoid misleading programmers), this error is localized, with

a !, to the type hole itself, with the error message providing partially consistent solutions as shown.

The user can interactively explore possible error localizations by hovering over a partially

consistent suggestion, which (temporarily) fills the type hole and thus returns the localization

decision to the bidirectional type system. Here, each choice causes a different set of two uses of x to

be marked, e.g., the first and third use for Int -> Int (shown above). Until the choice is finalized,

the type hole continues to operate gradually. Section 4 describes this distinctively neutral approach

to blending local and constraint-based type inference in Hazel, where bidirectional typing is used

to systematically mark erroneous expressions in the program and constraint-based inference (using

entirely standard algorithms, which we do not repeat in this paper) is used exclusively to mark

unfillable holes.
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2 THE MARKED LAMBDA CALCULUS
To begin to motivate the development of this section, consider Fig. 1, which shows common type

errors as they appear in the Hazel programming environment. These programs are syntactically

well-formed but ill-typed.

(a) Free variable error. (b) Inconsistent types error.

(c) Application of a non-lambda. (d) Inconsistent branches error.

Fig. 1. Examples of common type errors.

The key contribution of this section is the marked lambda calculus, a calculus based on the

gradually typed lambda calculus (GTLC) that formalizes the mechanism by which errors like these

can be localized, and how to recover, in all cases, from such errors. Section 2.1 introduces the

syntax, judgemental structure, guiding metatheory, and then goes through the rules, organized

by syntactic form rather than judgement, to build intuition about how the various judgements

relate to one another. All rules and theorems may be found organized by judgement form in the

supplementary appendix for reference, alongside a complete mechanization in the Agda proof

assistant [Norell 2007] (discussed in Section 2.2). We intentionally keep the marked lambda calculus

minimal, because it is intended to capture the essential idea and introduce a general pattern that

language designers can employ to created marked variants of their own type systems. As an initial

example, we consider a surprisingly subtle combination of features as a more substantial case

study: the combination of destructing let expressions with granular type annotations, in Section 2.3.

Finally, Section 2.4 briefly explores how the systemmight be extended to more complex judgemental

structures, such as parametric polymorphism.

2.1 The Core Calculus
The marked lambda calculus is based on the gradually typed lambda calculus [Siek and Taha 2006]

extended with numbers, booleans, pairs, and empty expression holes [Omar et al. 2017b]. Given in

Fig. 2, the syntax consists of two expression languages:

• The unmarked language, which is the original language. Expressions of this language are

called unmarked expressions, denoted by the metavariable 𝑒 .

• The marked language, which mirrors the structure of the unmarked language but is extended

with error marks. We call expressions of this language marked expressions, denoted 𝑒 .
In this simple setting, we only need one sort for types, 𝜏 . The base types num and bool classify
number and boolean expressions. The number literal corresponding to the mathematical number 𝑛

is given by 𝑛, and there is a single arithmetic operation, addition. tt and ff are the boolean values and

if 𝑒1 then 𝑒2 else 𝑒3 is the boolean conditional. Arrow and product types classify lambda abstractions

and pairs, respectively, in the usual way.
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? is a type hole, which we identify with the unknown type from gradual type theory [Siek and

Taha 2006]. Finally, to model the edit state of a program in development, LM denotes an empty
expression hole, used to represent syntactically incomplete portions of the program à la Hazelnut

[Omar et al. 2017a]. Note, however, that these empty expression holes are not at all semantically

critical to the calculus—they are included illustrate how the calculus fits into the larger problem of

modelling incomplete program states and to discuss polymorphic generalization in Section 4.4.

Type 𝜏 F ? | num | bool | 𝜏 → 𝜏 | 𝜏 × 𝜏

UExp 𝑒 F 𝑥 | 𝜆𝑥 : 𝜏 . 𝑒 | 𝑒 𝑒 | let 𝑥 = 𝑒 in 𝑒 | 𝑛 | 𝑒 + 𝑒

| tt | ff | if 𝑒 then 𝑒 else 𝑒 | (𝑒, 𝑒) | 𝜋1𝑒 | 𝜋2𝑒 | LM
MExp 𝑒 F 𝑥 | 𝜆𝑥 : 𝜏 . 𝑒 | 𝑒 𝑒 | let 𝑥 = 𝑒 in 𝑒 | 𝑛 | 𝑒 + 𝑒

| tt | ff | if 𝑒 then 𝑒 else 𝑒 | (𝑒, 𝑒) | 𝜋1𝑒 | 𝜋2𝑒 | LM
| L𝑥M□ | L𝑒M≁
| L𝜆𝑥 : 𝜏 . 𝑒M: | L𝜆𝑥 : 𝜏 . 𝑒M⇐▶↛ | L𝑒M⇒▶↛ 𝑒

| Lif 𝑒 then 𝑒 else 𝑒M⊓̸
| L(𝑒, 𝑒)M⇐▶×̸ | 𝜋1L𝑒M⇒▶×̸ | 𝜋2L𝑒M⇒▶×̸

Fig. 2. Syntax of the marked lambda calculus.

The key operation is marking, which transforms an unmarked expression into a marked expres-

sion, inserting error marks where appropriate. This corresponds to a type checking process with

error localization and recovery. The marked language may then serve as a foundation for other

semantic services, such as constraint-based inference (as discussed in Section 4). Intuitively, each of

the mark forms corresponds to a different kind of error message that might be shown by an editor

or emitted by a compiler. Note that we do not specify what the error message should say in this

paper.

Throughout the remainder of this section, as we formulate marking for the GTLC, we will

motivate and give precise semantics for each error mark. Furthermore, when the core is extended,

new marks may be needed, as we discuss below. As we shall see, the rules for marking may

be systematically derived by considering the error cases, yielding a recipe for developing error

localization and recovery semantics for gradual, bidirectional type systems in general.

Before giving any of the rules, let us summarize the overall judgemental structure of the calculus.

Note that colors in the judgement forms below are entirely redundant reading aids—color has no

semantic significance.

As our starting point, types classify unmarked expressions by a completely standard bidirectional
type system [Dunfield and Krishnaswami 2019; Pierce and Turner 2000], which employs two

mutually defined judgments. Type synthesis, written Γ ⊢𝑈 𝑒 ⇒ 𝜏 , establishes that, under the typing

context Γ, the expression 𝑒 synthesizes or locally infers the type 𝜏 . Type analysis, written Γ ⊢𝑈 𝑒 ⇐ 𝜏 ,

states that the expression 𝑒 may appear where an expression of type 𝜏 is expected.

The marked language possesses its own type system, also formulated bidirectionally. We write

Γ ⊢𝑀 𝑒 ⇒ 𝜏 for synthesis and Γ ⊢𝑀 𝑒 ⇐ 𝜏 for analysis (in addition to the color difference, note the

subscript on the turnstile to distinguish marked from unmarked typing).

Finally, the marking judgment is also of bidirectional nature. The synthetic marking judgment

Γ ⊢ 𝑒 ↬ 𝑒 ⇒ 𝜏 establishes that, under the context Γ, the unmarked expression 𝑒 is “marked into”

the marked expression 𝑒 , which synthesizes type 𝜏 . Analogously, the analytic marking judgment

Γ ⊢ 𝑒 ↬ 𝑒 ⇐ 𝜏 states that 𝑒 is marked into 𝑒 , which analyzes against 𝜏 .
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How can we ensure that the marking procedure is correctly defined? There are two critical

metatheorems that guide us as we continue. The first is a totality of marking:

Theorem 2.1 (Marking Totality).

(1) For all Γ and 𝑒 , there exist 𝑒 and 𝜏 such that Γ ⊢ 𝑒 ↬ 𝑒 ⇒ 𝜏 and Γ ⊢𝑀 𝑒 ⇒ 𝜏 .
(2) For all Γ, 𝑒 , and 𝜏 , there exists 𝑒 such that Γ ⊢ 𝑒 ↬ 𝑒 ⇐ 𝜏 and Γ ⊢𝑀 𝑒 ⇐ 𝜏 .

That is, we may mark any syntactically well-formed program in any context, resulting in a

well-typed marked program.

Furthermore, since error marks are effectively annotations on top of the program, marking

should preserve syntactic structure modulo those marks. Fig. 3 gives part of the definition of mark
erasure, which converts marked expressions back into unmarked ones by removing error marks.

LM□ = LM
𝑥□ = 𝑥

(𝜆𝑥 : 𝜏 . 𝑒)□ = 𝜆𝑥 : 𝜏 . (𝑒□)
(𝑒1 𝑒2)□ = (𝑒□

1
) (𝑒□

2
)

...

L𝑥M□
□ = 𝑥

L𝜆𝑥 : 𝜏 . 𝑒M:
□ = 𝜆𝑥 : 𝜏 . (𝑒□)

L𝜆𝑥 : 𝜏 . 𝑒M⇐▶↛
□ = 𝜆𝑥 : 𝜏 . (𝑒□)

(L𝑒1M⇒▶↛ 𝑒2)□ = (𝑒□
1
) (𝑒□

2
)

Lif 𝑒1 then 𝑒2 else 𝑒3M⊓̸
□ = if (𝑒□

1
) then (𝑒□

2
) else (𝑒□

3
)

L(𝑒1, 𝑒2)M⇐▶×̸
□ = (𝑒□

1
, 𝑒□

2
)

(𝜋1L𝑒M⇒▶×̸ )
□ = 𝜋1 (𝑒□)

(𝜋2L𝑒M⇒▶×̸ )
□ = 𝜋2 (𝑒□)

L𝑒M≁
□ = 𝑒□

Fig. 3. Mark erasure (selected)

Then, Theorem 2.2 provides the necessary well-formedness criterion for marking.

Theorem 2.2 (Marking Well-Formedness).

(1) If Γ ⊢ 𝑒 ↬ 𝑒 ⇒ 𝜏 , then Γ ⊢𝑀 𝑒 ⇒ 𝜏 and 𝑒□ = 𝑒 .
(2) If Γ ⊢ 𝑒 ↬ 𝑒 ⇐ 𝜏 , then Γ ⊢𝑀 𝑒 ⇐ 𝜏 and 𝑒□ = 𝑒 .

Together, these metatheorems imply that to go from a standard bidirectional system for the

unmarked language to a marking system, we need to handle all possible failure modes with

appropriate marks and marking logic (otherwise totality would be violated) and without otherwise

changing the program (otherwise well-formedness would be violated). Now, let us consider each

form in turn.

2.1.1 Numbers. To start, consider the simple case of numbers. Because of subsumption, which
is discussed in more detail next, we need only define a synthesis rule for unmarked numbers, in

which number literals synthesize the type num:

USNum

Γ ⊢𝑈 𝑛 ⇒ num
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How should numbers be marked? Straightforwardly, we simply give the same number as a

marked expression, synthesizing again num. No type errors may occur in a just single number, so

we only need the following rules for marking numbers and typing the results:

MKSNum

Γ ⊢ 𝑛 ↬ 𝑛 ⇒ num

MSNum

Γ ⊢𝑀 𝑛 ⇒ num

For addition expressions, the type of both operands should be num. To denote this in a bidi-

rectional system, they are analyzed against num, giving the following typing rule for unmarked

addition expressions:

USPlus

Γ ⊢𝑈 𝑒1 ⇐ num Γ ⊢𝑈 𝑒2 ⇐ num

Γ ⊢𝑈 𝑒1 + 𝑒2 ⇒ num

The marking rule parallels USPlus closely. Since an expected type for each operand is known,

we shift the responsibility for any type errors to them. Hence, we recursively mark each operand

in analytic mode and rebuild the marked addition expression. The typing rule for marked addition

expressions then mirrors USPlus exactly.

MKSPlus

Γ ⊢ 𝑒1 ↬ 𝑒1 ⇐ num Γ ⊢ 𝑒2 ↬ 𝑒2 ⇐ num

Γ ⊢ 𝑒1 + 𝑒2 ↬ 𝑒1 + 𝑒2 ⇒ num

MSPlus

Γ ⊢𝑀 𝑒1 ⇐ num Γ ⊢𝑀 𝑒2 ⇐ num

Γ ⊢𝑀 𝑒1 + 𝑒2 ⇒ num

2.1.2 Subsumption. Only synthetic rules are necessary for typing numbers and addition because

of subsumption, given below, which states that if an expression synthesizes a type, it may also be

analyzed against that type or any consistent type.

UASubsume

Γ ⊢𝑈 𝑒 ⇒ 𝜏 ′ 𝜏 ∼ 𝜏 ′ 𝑒 subsumable

Γ ⊢𝑈 𝑒 ⇐ 𝜏

We rely on the notion of type consistency from gradual type theory, which defines a reflexive and

symmetric (but not transitive) relation between types, writing 𝜏1 ∼ 𝜏2 to mean that 𝜏1 is consistent

with 𝜏2. Defined in Fig. 4, this replaces the notion of type equality to relate the unknown type to all

other types.

𝜏1 ∼ 𝜏2 𝜏1 is consistent with 𝜏2

TCUnknown1

? ∼ 𝜏

TCUnknown2

𝜏 ∼ ?

TCRefl

𝜏 ∼ 𝜏

TCArr

𝜏1 ∼ 𝜏 ′
1

𝜏2 ∼ 𝜏 ′
2

𝜏1 → 𝜏2 ∼ 𝜏 ′
1
→ 𝜏 ′

2

TCProd

𝜏1 ∼ 𝜏 ′
1

𝜏2 ∼ 𝜏 ′
2

𝜏1 × 𝜏2 ∼ 𝜏 ′
1
× 𝜏 ′

2

Fig. 4. Type consistency.

Hence, when checking 𝑛 against a known expected type, subsumption checks that the type is

consistent with num, the type that 𝑛 synthesizes. This succeeds for ? and num.

We also restrict the usage of subsumption to “subsumable” syntactic forms, written 𝑒 subsumable.
This judgment is defined for all syntactic forms except lambda abstractions, conditionals, and pairs,

the only ones with both synthesis and analysis rules (see below). In other words, we restrict

subsumption to be the rule of “last resort”, which is necessary to establish that marking and typing

are deterministic (see Theorem 2.4).
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Now, to define analytic marking on forms without explicit analytic typing rules, we also need

subsumption rules for marking and marked expression typing. Note that we define an analogous

notion of “subsumability” for marked expressions, written 𝑒 subsumable.

MKASubsume

Γ ⊢ 𝑒 ↬ 𝑒 ⇒ 𝜏 ′ 𝜏 ∼ 𝜏 ′ 𝑒 subsumable

Γ ⊢ 𝑒 ↬ 𝑒 ⇐ 𝜏

MASubsume

Γ ⊢𝑀 𝑒 ⇒ 𝜏 ′ 𝜏 ∼ 𝜏 ′ 𝑒 subsumable

Γ ⊢𝑀 𝑒 ⇐ 𝜏

But what happens when the synthesized type of an expression is not consistent with the expected

type, i.e., that the premise 𝜏 ∼ 𝜏 ′ fails? Recalling the example of Fig. 1b, subsumption would be

used to analyze tt against num when checking tt + 1, which fails since num ≁ bool—UASubsume
does not apply. At this point, traditional typing semantics would simply fail the type checking

process. MKASubsume would also not be applicable, leaving marking undefined in those cases.

To satisfy marking totality, such a possibility motivates an inconsistent type mark L𝑒M≁ , which is

applied when the synthesized type of 𝑒 is inconsistent with the expected type:

MKAInconsistentTypes

Γ ⊢ 𝑒 ↬ 𝑒 ⇒ 𝜏 ′ 𝜏 ≁ 𝜏 ′ 𝑒 subsumable

Γ ⊢ 𝑒 ↬ L𝑒M≁ ⇐ 𝜏

MAInconsistentTypes

Γ ⊢𝑀 𝑒 ⇒ 𝜏 ′ 𝜏 ≁ 𝜏 ′ 𝑒 subsumable

Γ ⊢𝑀 L𝑒M≁ ⇐ 𝜏

Observe that the premises of MKAInconsistentTypes are identical to those of MKASubsume,

except that 𝜏 ≁ 𝜏 ′. By marking an error, the type checking process may carry on and provide

semantic feedback for the rest of the program.

2.1.3 Variables. Let us now consider the case of variables. Typing in the unmarked language is

standard, and because of subsumption, only a synthetic rule is required:

USVar

𝑥 : 𝜏 ∈ Γ

Γ ⊢𝑈 𝑥 ⇒ 𝜏

That is, if 𝑥 is bound to a type in the typing context, it synthesizes that type. Straightforwardly,

marking converts an unmarked variable into the same variable via the following rules:

MKSVar

𝑥 : 𝜏 ∈ Γ

Γ ⊢ 𝑥 ↬ 𝑥 ⇒ 𝜏

MSVar

𝑥 : 𝜏 ∈ Γ

Γ ⊢𝑀 𝑥 ⇒ 𝜏

However, consider the case that a variable, such as 𝑦 in Fig. 1a, is not bound. Similar to above,

USVar would not apply. A total marking procedure should, however, report the error and continue,

motivating a free variable mark L𝑥M□ and the accompanying rules:

MKSFree

𝑥 ∉ dom(Γ)
Γ ⊢ 𝑥 ↬ L𝑥M□ ⇒ ?

MSFree

𝑥 ∉ dom(Γ)
Γ ⊢𝑀 L𝑥M□ ⇒ ?

A free variable is marked as such, and since nothing may be said about their types, we synthesize

the unknown type. As with the inconsistent type mark, this allows type checking to proceed, with

usage of the free variable permitted in any expression.
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2.1.4 Lambda Abstractions. Unlike numbers and variables, there are explicit synthesis and analysis

rules for unmarked lambda abstractions. This is because expected input and output types are

known, and we may verify that the type annotation and body match them.

USLam

Γ, 𝑥 : 𝜏1 ⊢𝑈 𝑒 ⇒ 𝜏2

Γ ⊢𝑈 𝜆𝑥 : 𝜏1. 𝑒 ⇒ 𝜏1 → 𝜏2

UALam

𝜏3 ▶→ 𝜏1 → 𝜏2 𝜏 ∼ 𝜏1 Γ, 𝑥 : 𝜏 ⊢𝑈 𝑒 ⇐ 𝜏2

Γ ⊢𝑈 𝜆𝑥 : 𝜏 . 𝑒 ⇐ 𝜏3

The synthesis rule is standard. Analysis employs the judgment 𝜏 ▶→ 𝜏1 → 𝜏2, which establishes

that 𝜏 is a matched arrow type [Cimini and Siek 2016], i.e., it may be considered an arrow type.

Defined in Fig. 5, this notion is purely a technical mechanism to avoid duplication of rules related

to arrow types [Siek et al. 2015].

𝜏 ▶→ 𝜏1 → 𝜏2 𝜏 has matched arrow type 𝜏1 → 𝜏2

TMAUnknown

? ▶→ ? → ?

TMAArr

𝜏1 → 𝜏2 ▶→ 𝜏1 → 𝜏2

Fig. 5. Matched arrow types.

The synthesis rule for marking intuitively follows USLam closely. We recursively mark the body

with an extended context and construct a new marked lambda abstraction:

MKSLam

Γ, 𝑥 : 𝜏1 ⊢ 𝑒 ↬ 𝑒 ⇒ 𝜏2

Γ ⊢ 𝜆𝑥 : 𝜏1. 𝑒 ↬ 𝜆𝑥 : 𝜏1. 𝑒 ⇒ 𝜏1 → 𝜏2

MSLam

Γ, 𝑥 : 𝜏1 ⊢𝑀 𝑒 ⇒ 𝜏2

Γ ⊢𝑀 𝜆𝑥 : 𝜏1. 𝑒 ⇒ 𝜏1 → 𝜏2

Similarly, we construct corresponding analytic rules:

MKALam1

𝜏3 ▶→ 𝜏1 → 𝜏2 𝜏 ∼ 𝜏1

Γ, 𝑥 : 𝜏 ⊢ 𝑒 ↬ 𝑒 ⇐ 𝜏2

Γ ⊢ 𝜆𝑥 : 𝜏 . 𝑒 ↬ 𝜆𝑥 : 𝜏 . 𝑒 ⇐ 𝜏3

MALam1

𝜏3 ▶→ 𝜏1 → 𝜏2 𝜏 ∼ 𝜏1

Γ, 𝑥 : 𝜏 ⊢𝑀 𝑒 ⇐ 𝜏2

Γ ⊢𝑀 𝜆𝑥 : 𝜏 . 𝑒 ⇐ 𝜏3

However, recalling totality, we look again to the premises of UALam to see what type errors

may arise. First, what if 𝜏3 is not a matched arrow type? This would be the case if it were num,

for example. The lambda abstraction’s synthesized type would indeed be inconsistent with the

expected type, but this case is slightly distinct from that of the inconsistent types mark: the lambda

expression is in analytic position. Instead, we mark L𝑒M⇐▶↛ to indicate that an expression of the

non-matched arrow type 𝜏3 was expected, but a lambda abstraction was encountered.

MKALam2

𝜏3 ▶↛ Γ, 𝑥 : 𝜏 ⊢ 𝑒 ↬ 𝑒 ⇐ ?

Γ ⊢ 𝜆𝑥 : 𝜏 . 𝑒 ↬ L𝜆𝑥 : 𝜏 . 𝑒M⇐▶↛ ⇐ 𝜏3

MALam2

𝜏3 ▶↛ Γ, 𝑥 : 𝜏 ⊢𝑀 𝑒 ⇐ ?

Γ ⊢𝑀 L𝜆𝑥 : 𝜏 . 𝑒M⇐▶↛ ⇐ 𝜏3

Though no expected output type is known, we still need to check and mark the body; it is thus

analyzed against the unknown type in MKALam2. It is possible to instead synthesize the body, but

we choose analysis so that the body is always in analytic mode. The guiding design principle in

this decision is a notion of “conservation of mode,” but it is not critical to the calculus.

Note that in this example language, the distinction from the inconsistent type mark is of reduced

significance—all expressions synthesize a type. However, the addition of unannotated lambda

abstractions, for example, would necessitate such a distinction.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 68. Publication date: January 2024.



Total Type Error Localization and Recovery with Holes 68:11

Another error arises when 𝜏3 ▶→ 𝜏1 → 𝜏2, but 𝜏 ≁ 𝜏1, i.e., the actual type annotation for 𝑥 is

inconsistent with the expected input type. The inconsistent ascription mark L𝜆𝑥 : 𝜏 . 𝑒M: indicates
exactly this error, and we add a final pair of analytic rules:

MKALam3

𝜏3 ▶→ 𝜏1 → 𝜏2 𝜏 ≁ 𝜏1

Γ, 𝑥 : 𝜏 ⊢ 𝑒 ↬ 𝑒 ⇐ 𝜏2

Γ ⊢ 𝜆𝑥 : 𝜏 . 𝑒 ↬ L𝜆𝑥 : 𝜏 . 𝑒M: ⇐ 𝜏3

MALam3

𝜏3 ▶→ 𝜏1 → 𝜏2 𝜏 ≁ 𝜏1

Γ, 𝑥 : 𝜏 ⊢𝑀 𝑒 ⇐ 𝜏2

Γ ⊢𝑀 L𝜆𝑥 : 𝜏 . 𝑒M: ⇐ 𝜏3

2.1.5 Applications. In the unmarked language, only a synthesis rule is necessary for applications:

USAp

Γ ⊢𝑈 𝑒1 ⇒ 𝜏 𝜏 ▶→ 𝜏1 → 𝜏2 Γ ⊢𝑈 𝑒2 ⇐ 𝜏1

Γ ⊢𝑈 𝑒1 𝑒2 ⇒ 𝜏2

Following the same methodology up to this point, we have the following marking and typing rules:

MKSAp1

Γ ⊢ 𝑒1 ↬ 𝑒1 ⇒ 𝜏 𝜏 ▶→ 𝜏1 → 𝜏2

Γ ⊢ 𝑒2 ↬ 𝑒2 ⇐ 𝜏1

Γ ⊢ 𝑒1 𝑒2 ↬ 𝑒1 𝑒2 ⇒ 𝜏2

MSAp1

Γ ⊢𝑀 𝑒1 ⇒ 𝜏 𝜏 ▶→ 𝜏1 → 𝜏2

Γ ⊢𝑀 𝑒2 ⇐ 𝜏1

Γ ⊢𝑀 𝑒1 𝑒2 ⇒ 𝜏2

Again, to satisfy totality, we must consider the case when 𝜏 is not a matched arrow type, such

as in the example of Fig. 1c. There is no expected type for the argument, so we perform analytic

marking on 𝑒2 against the unknown type. In this case, it is not quite right to mark 𝑒1 with the

inconsistent type mark; rather than any single type, it is any member of the family of arrow types

that is expected. For such a “constrained” synthetic mode, we use a specialized mark L𝑒M⇒▶↛ , which
indicates that 𝑒 was expected to be a function—but was not. The output type is unknown, so the

entire expression synthesizes the unknown type.

MKSAp2

Γ ⊢ 𝑒1 ↬ 𝑒1 ⇒ 𝜏 𝜏 ▶↛ Γ ⊢ 𝑒2 ↬ 𝑒2 ⇐ ?

Γ ⊢ 𝑒1 𝑒2 ↬ L𝑒1M⇒▶↛ 𝑒2 ⇒ ?

MSAp2

Γ ⊢𝑀 𝑒1 ⇒ 𝜏 𝜏 ▶↛ Γ ⊢𝑀 𝑒2 ⇐ ?

Γ ⊢𝑀 L𝑒M⇒▶↛ 𝑒 ⇒ ?

It is natural to extend this approach to other elimination forms that require the handling of

unmatched types, such as products. Indeed, the same approach is taken for projections below.

Another similar approach might indicate the same kind of error but mark the entire application.

2.1.6 Booleans. The boolean values are similar to numbers:

USTrue

Γ ⊢𝑈 tt ⇒ bool

MKSTrue

Γ ⊢ tt ↬ tt ⇒ bool

MSTrue

Γ ⊢𝑀 tt ⇒ bool

USFalse

Γ ⊢𝑈 ff ⇒ bool

MKSFalse

Γ ⊢ ff ↬ ff ⇒ bool

MSFalse

Γ ⊢𝑀 ff ⇒ bool

Conditionals, however, present a more interesting case. In the unmarked language, we have both

explicit synthetic and analytic rules:

USIf

Γ ⊢𝑈 𝑒1 ⇐ bool Γ ⊢𝑈 𝑒2 ⇒ 𝜏1

Γ ⊢𝑈 𝑒3 ⇒ 𝜏2 𝜏3 = 𝜏1 ⊓ 𝜏2

Γ ⊢𝑈 if 𝑒1 then 𝑒2 else 𝑒3 ⇒ 𝜏3

UAIf

Γ ⊢𝑈 𝑒1 ⇐ bool
Γ ⊢𝑈 𝑒1 ⇐ 𝜏 Γ ⊢𝑈 𝑒2 ⇐ 𝜏

Γ ⊢𝑈 if 𝑒1 then 𝑒2 else 𝑒3 ⇐ 𝜏
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In synthetic position, conditionals synthesize the meet of the branch types 𝜏1 and 𝜏2, which we

define inductively in Fig. 6. We choose the “more specific” type of the two. In analytic position,

since there is an expected type for both branches, we shift the blame for any errors to them.

𝜏1 ⊓ 𝜏2 is a partial metafunction defined as follows:

?⊓𝜏 = 𝜏

𝜏 ⊓ ? = 𝜏

num ⊓ num = num
bool ⊓ bool = bool

(𝜏1 → 𝜏2) ⊓ (𝜏 ′
1
→ 𝜏 ′

2
) = (𝜏1 ⊓ 𝜏 ′

1
) → (𝜏2 ⊓ 𝜏 ′

2
)

(𝜏1 × 𝜏2) ⊓ (𝜏 ′
1
× 𝜏 ′

2
) = (𝜏1 ⊓ 𝜏 ′

1
) × (𝜏2 ⊓ 𝜏 ′

2
)

Fig. 6. Type meet.

Following USIf and UAIf, we may derive the following marking and typing rules.

MKSIf

Γ ⊢ 𝑒1 ↬ 𝑒1 ⇐ bool Γ ⊢ 𝑒2 ↬ 𝑒2 ⇒ 𝜏1

Γ ⊢ 𝑒3 ↬ 𝑒3 ⇒ 𝜏2 𝜏3 = 𝜏1 ⊓ 𝜏2

Γ ⊢ if 𝑒1 then 𝑒2 else 𝑒3 ↬ if 𝑒1 then 𝑒2 else 𝑒3 ⇒ 𝜏3

MSIf

Γ ⊢𝑀 𝑒1 ⇐ bool Γ ⊢𝑀 𝑒2 ⇒ 𝜏1

Γ ⊢𝑀 𝑒3 ⇒ 𝜏2 𝜏3 = 𝜏1 ⊓ 𝜏2

Γ ⊢𝑀 if 𝑒1 then 𝑒2 else 𝑒3 ⇒ 𝜏3

MKAIf

Γ ⊢ 𝑒1 ↬ 𝑒1 ⇐ bool
Γ ⊢ 𝑒2 ↬ 𝑒2 ⇐ 𝜏 Γ ⊢ 𝑒3 ↬ 𝑒3 ⇐ 𝜏

Γ ⊢ if 𝑒1 then 𝑒2 else 𝑒3 ↬ if 𝑒1 then 𝑒2 else 𝑒3 ⇐ 𝜏

MAIf

Γ ⊢𝑀 𝑒1 ⇐ bool
Γ ⊢𝑀 𝑒1 ⇐ 𝜏 Γ ⊢𝑀 𝑒2 ⇐ 𝜏

Γ ⊢𝑀 if 𝑒1 then 𝑒2 else 𝑒3 ⇐ 𝜏

However, in synthetic position, it may be the case that the two branch types have no meet.

This occurs, in fact, when they are inconsistent, motivating the the inconsistent branches mark
Lif 𝑒 then 𝑒 else 𝑒M⊓̸. Then, adding the following rules ensures totality on conditionals:

MKSInconsistentBranches

Γ ⊢ 𝑒1 ↬ 𝑒1 ⇐ bool Γ ⊢ 𝑒2 ↬ 𝑒2 ⇒ 𝜏1

Γ ⊢ 𝑒3 ↬ 𝑒3 ⇒ 𝜏2 𝜏1 ≁ 𝜏2

Γ ⊢ if 𝑒1 then 𝑒2 else 𝑒3 ↬ Lif 𝑒1 then 𝑒2 else 𝑒3M⊓̸ ⇒ ?

MSInconsistentBranches

Γ ⊢𝑀 𝑒1 ⇐ bool Γ ⊢𝑀 𝑒2 ⇒ 𝜏1

Γ ⊢𝑀 𝑒3 ⇒ 𝜏2 𝜏1 ≁ 𝜏2

Γ ⊢𝑀 Lif 𝑒1 then 𝑒2 else 𝑒3M⊓̸ ⇒ ?

As previously mentioned, we do not prescribe any single localization design as “correct”, and

the framework freely allows for other approaches. For example, as discussed in the introduction,

we may choose to regard the first branch as “correct” and localize any errors to the second. The

following rule formalizes such a design:

MKSIf’

Γ ⊢ 𝑒1 ↬ 𝑒1 ⇐ bool Γ ⊢ 𝑒2 ↬ 𝑒2 ⇒ 𝜏 Γ ⊢ 𝑒3 ↬ 𝑒3 ⇐ 𝜏

Γ ⊢ if 𝑒1 then 𝑒2 else 𝑒3 ↬ if 𝑒1 then 𝑒2 else 𝑒3 ⇒ 𝜏

2.1.7 Pairs. At this point, the introduction of pairs expressions and the necessary projection

operators poses no great challenge. Explicit synthesis and analysis rules govern the former.

USPair

Γ ⊢𝑈 𝑒1 ⇒ 𝜏1 Γ ⊢𝑈 𝑒2 ⇒ 𝜏2

Γ ⊢𝑈 (𝑒1, 𝑒2) ⇒ 𝜏1 × 𝜏2

UAPair

𝜏 ▶× 𝜏1 × 𝜏2 Γ ⊢𝑈 𝑒1 ⇐ 𝜏1 Γ ⊢𝑈 𝑒2 ⇐ 𝜏2

Γ ⊢𝑈 (𝑒1, 𝑒2) ⇐ 𝜏
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In similar fashion to above, we may derive marking rules from these in an intuitive manner:

MKSPair

Γ ⊢ 𝑒1 ↬ 𝑒1 ⇒ 𝜏1 Γ ⊢ 𝑒2 ↬ 𝑒2 ⇒ 𝜏2

Γ ⊢ (𝑒1, 𝑒2) ↬ (𝑒1, 𝑒2) ⇒ 𝜏1 × 𝜏2

MSPair

Γ ⊢𝑀 𝑒1 ⇒ 𝜏1 Γ ⊢𝑀 𝑒2 ⇒ 𝜏2

Γ ⊢𝑀 (𝑒1, 𝑒2) ⇒ 𝜏1 × 𝜏2

MKAPair1

𝜏 ▶× 𝜏1 × 𝜏2

Γ ⊢ 𝑒1 ↬ 𝑒1 ⇐ 𝜏1 Γ ⊢ 𝑒2 ↬ 𝑒2 ⇐ 𝜏2

Γ ⊢ (𝑒1, 𝑒2) ↬ (𝑒1, 𝑒2) ⇐ 𝜏

MAPair1

𝜏 ▶× 𝜏1 × 𝜏2

Γ ⊢𝑀 𝑒1 ⇐ 𝜏1 Γ ⊢𝑀 𝑒2 ⇐ 𝜏2

Γ ⊢𝑀 (𝑒1, 𝑒2) ⇐ 𝜏

However, as when analyzing a lambda abstraction against a non-matched arrow type, the type

against which a pair is analyzed may not match any product type. We solve this by adding an error

mark L(𝑒1, 𝑒2)M⇐▶×̸ and the corresponding rules:

MKAPair2

𝜏 ▶×̸ Γ ⊢ 𝑒1 ↬ 𝑒1 ⇐ ?

Γ ⊢ 𝑒2 ↬ 𝑒2 ⇐ ?

Γ ⊢ (𝑒1, 𝑒2) ↬ L(𝑒1, 𝑒2)M⇐▶×̸ ⇐ 𝜏

MAPair2

𝜏 ▶×̸ Γ ⊢𝑀 𝑒1 ⇐ ?

Γ ⊢𝑀 𝑒2 ⇐ ?

Γ ⊢𝑀 L(𝑒1, 𝑒2)M⇐▶×̸ ⇐ 𝜏

As the elimination form for products, projections are handled in a similar manner as applications.

In the interest of space, we give only the rules for the left projection operator; right projections are

governed analogously.

USProjL

Γ ⊢𝑈 𝑒 ⇒ 𝜏

𝜏 ▶× 𝜏1 × 𝜏2

Γ ⊢𝑈 𝜋1𝑒 ⇒ 𝜏1

MKSProjL1

Γ ⊢ 𝑒 ↬ 𝑒 ⇒ 𝜏

𝜏 ▶× 𝜏1 × 𝜏2

Γ ⊢ 𝜋1𝑒 ↬ 𝜋1𝑒 ⇒ 𝜏1

MSProjL1

Γ ⊢𝑀 𝑒 ⇒ 𝜏

𝜏 ▶× 𝜏1 × 𝜏2

Γ ⊢𝑀 𝜋1𝑒 ⇒ 𝜏1

In the case that the subject of the projection does not synthesize a matched product type, we

mark with an error, written 𝜋1L𝑒M⇒▶×̸ :

MKSProjL2

Γ ⊢ 𝑒 ↬ 𝑒 ⇒ 𝜏 𝜏 ▶×̸

Γ ⊢ 𝜋1𝑒 ↬ 𝜋1L𝑒M⇒▶×̸ ⇒ ?

MSProjL2

Γ ⊢𝑀 𝑒 ⇒ 𝜏 𝜏 ▶×̸

Γ ⊢𝑀 𝜋1L𝑒M⇒▶×̸ ⇒ ?

2.1.8 Holes. For completeness, we finish the development of the marked lambda calculus on the

extended GTLC with the marking of empty holes, which are never marked (see Sec. 4 for marking

unfillable holes using constraint solving).

USHole

Γ ⊢𝑈 LM ⇒ ?

MKSHole

Γ ⊢ LM ↬ LM ⇒ ?

MSHole

Γ ⊢𝑀 LM ⇒ ?

2.1.9 Additional Metatheorems. To conclude this section, we present two more metatheorems that

help ensure correctness of the system. Although Theorem 2.2 guarantees that marking does not

change the syntactic structure of a program, it makes no statement about the presence of error

marks in the resulting marked program. Theorem 2.3 establishes that well-typed expressions are

left unmarked and ill-typed expressions have at least one mark.

Theorem 2.3 (Marking of Well-Typed/Ill-Typed Expressions).

(1)(a) If Γ ⊢𝑈 𝑒 ⇒ 𝜏 and Γ ⊢ 𝑒 ↬ 𝑒 ⇒ 𝜏 , then 𝑒 markless.
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(b) If Γ ⊢𝑈 𝑒 ⇐ 𝜏 and Γ ⊢ 𝑒 ↬ 𝑒 ⇐ 𝜏 , then 𝑒 markless.
(2)(a) If there does not exist 𝜏 such that Γ ⊢𝑈 𝑒 ⇒ 𝜏 , then for all 𝑒 and 𝜏 ′ such that Γ ⊢ 𝑒 ↬ 𝑒 ⇒ 𝜏 ′ ,

it is not the case that 𝑒 markless.
(b) If there does not exist 𝜏 such that Γ ⊢𝑈 𝑒 ⇐ 𝜏 , then for all 𝑒 and 𝜏 ′ such that Γ ⊢ 𝑒 ↬ 𝑒 ⇐ 𝜏 ′ ,

it is not the case that 𝑒 markless.

Finally, no less importantly, marking is deterministic. This is given by Theorem 2.4.

Theorem 2.4 (Marking Unicity).

(1) If Γ ⊢ 𝑒 ↬ 𝑒1 ⇒ 𝜏1 and Γ ⊢ 𝑒 ↬ 𝑒2 ⇒ 𝜏2 , then 𝑒1 = 𝑒2 and 𝜏1 = 𝜏2.
(2) If Γ ⊢ 𝑒 ↬ 𝑒1 ⇐ 𝜏 and Γ ⊢ 𝑒 ↬ 𝑒2 ⇐ 𝜏 , then 𝑒1 = 𝑒2.

Together, totality and unicity give that marking may be implemented as a total function. Indeed,

given the algorithmic nature of bidirectional typing, it is fairly direct to implement these rules.

2.2 Agda Mechanization
The semantics and metatheory presented above have been fully mechanized in the Agda proof

assistant. The mechanization [Zhao et al. 2023] additionally includes the decoupled Hazelnut

action semantics described in Section 3.2. Though the mechanization’s documentation contains

more detailed discussion regarding technical decisions made therein, we highlight some important

aspects here.

The standard approach of modeling judgments as inductive datatypes and rules as constructors

for those datatypes is taken. By representing marked expressions with implicitly typed terms, we

get part of Theorem 2.2 for free from the definition of marking. For the convenience of readers

interested in browsing the mechanization, as possible, rule names match those presented here.

2.3 Destructuring Let with Type Annotated Composite Patterns
To ease the use of products and other datatypes, many languages feature destructuring bindings. In a

typed setting, we may want to granularly add type annotations in patterns as well. In a bidirectional

setting, as it turns out, this combination of features is surprisingly tricky to get right! Let us add let

expressions and simple patterns, writing _ for the wildcard pattern, 𝑥 for a variable pattern, and

(𝑝1, 𝑝2) for a pair:
UExp 𝑒 F · · · | let 𝑝 = 𝑒 in 𝑒

UPat 𝑝 F _ | 𝑥 | (𝑝, 𝑝) | 𝑝 : 𝜏

Consider the following program:

let (𝑎, 𝑏) = (1, 2) in 𝑒

To type this, one approach is to synthesize a type from the pattern and analyze the definition

against that type. However, this may run afoul of user expectation, which might reasonably suppose

it to be equivalent to the expanded expression let 𝑎 = 1 in let 𝑏 = 2 in 𝑒 . In the original, the pattern

synthesizes the type ?× ?, and (1, 2) is analyzed against it, hence 1 and 2 are each analyzed against

?. In the expanded version, however, they are typed in synthetic mode.

Though it is benign in this example, there is a subtle semantic distinction: synthetic mode imposes

no type constraints, whereas analytic mode imposes a trivial type constraint. This manifests when

expressions may have internal type inconsistencies, as in the following:

let 𝑎 = if tt then 1 else ff in 𝑒

If the pattern 𝑎 suggests that the conditional is in synthetic position, it will be marked with an

inconsistent branches error mark following our development above. If instead it is in analytic
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position against the unknown type, each branch is checked independently against this trivial

constraint, and no mark will be produced.

To remedy this situation and preserve the semantic distinction between synthesis and analysis

against the unknown type, we introduce a pattern annotation form, written 𝑝 : 𝜏 , which allows the

explicit imposition of typing constraints. That is, the absence of any type annotation on a variable

pattern places the corresponding definition in synthetic mode, while the programmer may impose

typing constraints—the trivial constraint, if they wish—on the definition. As illustration, consider

the following program:

let (𝑎, 𝑏 : ?) = (if tt then 1 else ff, if tt then 2 else ff) in 𝑒

Since 𝑎 has no constraint, the left component is in synthetic position, leading to an inconsistent

branches error. The type annotation on 𝑏 puts the right component in analytic mode against the

unknown type, leading to no error marks.

This is achieved by adding a “switch type”, denoted ?
⇒
, which exists entirely to trigger a “switch”

to synthesis. ?
⇒

represents a trivial constraint, instantiated as a type for the sole purpose of using

the existing machinery to propagate the appropriate mode switch to the relevant sub-expression of

the definition. This is expressed by the following rule:

UASynSwitch

Γ ⊢𝑈 𝑒 ⇒ 𝜏

Γ ⊢𝑈 𝑒 ⇐ ?
⇒

This switch type carries over identically to a non-gradual setting, but here we represent it as

a variant of ? as it behaves identically with respect to consistency and our notions of matched

arrow/product.

In the previous example, the unannotated pattern variable 𝑎 synthesizes ?
⇒
, and the annotated

pattern 𝑏 : ? synthesizes ?. We write Γ ⊢𝑈 𝑝 ⇒ 𝜏 to say that the pattern 𝑝 synthesizes type 𝜏 .

USPVar

Γ ⊢𝑈 𝑥 ⇒ ?
⇒

USPPair

Γ ⊢𝑈 𝑝1 ⇒ 𝜏1 Γ ⊢𝑈 𝑝2 ⇒ 𝜏2

Γ ⊢𝑈 (𝑝1, 𝑝2) ⇒ 𝜏1 × 𝜏2

USPAnn

Γ ⊢𝑈 𝑝 ⇐ 𝜏 ⊣ Γ′

Γ ⊢𝑈 𝑝 : 𝜏 ⇒ 𝜏

Given by the judgment Γ ⊢𝑈 𝑝 ⇐ 𝜏 ⊣ Γ′ , patterns are also typed analytically, in which case they

produce an output context Γ′ that extends Γ with bindings introduced by the pattern. Note again

that ?
⇒

exists entirely to ensure that sub-expressions of the definition are assigned an appropriate

typing mode—it is never added to the context, i.e., it cannot escape into the rest of the program and

cause body expressions to synthesize accidentally.

UAPVar

Γ ⊢𝑈 𝑥 ⇐ 𝜏 ⊣ Γ, 𝑥 : 𝜏

UAPPair

𝜏 ▶× 𝜏1 × 𝜏2

Γ ⊢𝑈 𝑝1 ⇐ 𝜏1 ⊣ Γ1 Γ1 ⊢𝑈 𝑝2 ⇐ 𝜏2 ⊣ Γ2

Γ ⊢𝑈 (𝑝1, 𝑝2) ⇐ 𝜏 ⊣ Γ2

UAPAnn

Γ ⊢𝑈 𝑝 ⇐ 𝜏 ′ ⊣ Γ′

𝜏 ∼ 𝜏 ′

Γ ⊢𝑈 𝑝 : 𝜏 ′ ⇐ 𝜏 ⊣ Γ′

Synthesis for let expressions is straightforward: we synthesize the type of the definition and

analyze the pattern against it. We then synthesize the body under the new context:

USLetPat

Γ ⊢𝑈 𝑒1 ⇒ 𝜏1 Γ ⊢𝑈 𝑝 ⇐ 𝜏1 ⊣ Γ′ Γ′ ⊢𝑈 𝑒2 ⇒ 𝜏2

Γ ⊢𝑈 let 𝑝 = 𝑒1 in 𝑒2 ⇒ 𝜏2

The analytic rule is similar, with the final premise and conclusion changed to analysis.
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Unfortunately, attempting an analogous marking rule runs into some trouble. We want any type

annotations in the pattern to be canonical, which means analyzing the definition to attribute to it

any inconsistencies. But we still must analyze the pattern, incorporating the definition’s type to

produce the context needed by the body. So we do a “round trip”: analyze the definition against

the pattern’s type, and then the pattern against the definition’s. Since the first analysis establishes

consistency, this second analysis is guaranteed to succeed; we only care about the context produced:

MKSLetPat

Γ ⊢ 𝑝 ↬ 𝑝 ⇒ 𝜏𝑝 Γ ⊢ 𝑒1 ↬ 𝑒1 ⇐ 𝜏𝑝 Γ ⊢𝑈 𝑒1 ⇒ 𝜏1

Γ ⊢𝑈 𝑝 ⇐ 𝜏1 ⊣ Γ′ Γ′ ⊢ 𝑒2 ↬ 𝑒2 ⇒ 𝜏2

Γ ⊢ let 𝑝 = 𝑒1 in 𝑒2 ↬ let 𝑝 = 𝑒1 in 𝑒2 ⇒ 𝜏2

We omit the marking of patterns—they may be derived in the same way as those for expressions

and are governed by similar metatheorems (again, totality guides the derivation). In the analytic

cases, we introduce error marks that parallel to L𝑒M≁ and L𝑒M⇐▶×̸ .
Note that both USLetPat and MKSLetPat assume that the definition synthesizes. In our system

this is always the case, but if we added, for example, unannotated lambda abstractions, we might

wish to relax this restriction. We can freely add variations of the rules where if the definition fails to

synthesize, it is instead analyzed against the synthesized type of the pattern. To avoid an additional

redundant analysis, we would further want to modify the pattern synthesis judgement to produce

a context as well.

Recent work by Yuan et al. [2023] addresses the problem of general pattern matching with typed

holes, providing mechanisms to reason statically about redundancy and exhaustiveness in the

presence of pattern holes. Integrating this work with the marked lambda calculus would employ

error marks indicating inexhaustive matches and redundant patterns.

2.4 Parametric Polymorphism and Richer Judgmental Structures
To further demonstrate that the judgmental structure of the marked lambda calculus may be applied

to richer typing features, we now explore an extension of the core language developed above to

System F-style parametric polymorphism. Toward this end, we supplement the language in Fig. 7

with type abstractions Λ𝛼. 𝑒 and applications 𝑒 [𝜏]. These operate on forall types ∀𝛼. 𝜏 and type

variables 𝛼 , which are governed by a well-formedness judgment, written Σ ⊢𝑈 𝜏 , in the standard

way.

Type 𝜏 F · · · | ∀𝛼. 𝜏 | 𝛼
MType 𝜏 F · · · | ∀𝛼. 𝜏 | 𝛼 | L𝛼M□
UExp 𝑒 F · · · | Λ𝛼. 𝑒 | 𝑒 [𝜏]
MExp 𝑒 F · · · | Λ𝛼. 𝑒 | 𝑒 [𝜏]

| LΛ𝛼. 𝑒M⇐▶ ̸∀ | L𝑒M⇒▶ ̸∀ [𝜏]

Fig. 7. Extension of the marked lambda calculus for parametric polymorphism

Crucially, just as expression variables may be free, arbitrary programs may contain free type

variables; similar to the introduction of both unmarked and marked patterns in the previous

section, we now need separate notions of unmarked and marked types. The latter we denote by the

metavariable 𝜏 .

A marking judgment, written Σ ⊢ 𝜏 ↬ 𝜏 , then, relates the two sorts. It is parameterized over

a context of type variables Σ, and most of the rules recurse straightforwardly. When a free type
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variable 𝛼 is encountered, however, we mark it as such, writing L𝛼M□. This gives the following
marking and well-formedness rules:

MKTFree

𝛼 ∉ Σ

Σ ⊢ 𝛼 ↬ L𝛼M□

MTWFFree

𝛼 ∉ Σ

Σ ⊢𝑀 L𝛼M□
Just as expression error marks synthesize the unknown type to allow type-checking to continue,

these marked types operate identically to the unknown type with respect to consistency and other

auxiliary notions. Furthermore, we define analogous notions of mark erasure on types, and, as with

pattern marking above, metatheoretic statements ensure their correctness.

The development of marking for type abstractions is similar to that for ordinary lambda abstrac-

tions. The synthetic case is straightforward; in analytic position, if the type being analyzed against

is not a matched forall type, an error is marked:

MKATypeLam2

𝜏 ▶ ̸∀ Σ, 𝛼 ; Γ ⊢ 𝑒 ↬ 𝑒 ⇐ ?

Σ; Γ ⊢ Λ𝛼. 𝑒 ↬ LΛ𝛼. 𝑒M⇐▶ ̸∀ ⇐ 𝜏

MATypeLam2

𝜏 ▶ ̸∀ Σ, 𝛼 ; Γ ⊢𝑀 𝑒 ⇐ ?

Σ; Γ ⊢𝑀 LΛ𝛼. 𝑒M⇐▶ ̸∀ ⇐ 𝜏

Likewise, type application mirrors ordinary application: in the case that the expression being

applied does not synthesize a matched forall type, an error is marked. With this, totality of marking

is satisfied.

MKSTypeAp2

Σ; Γ ⊢ 𝑒 ↬ 𝑒 ⇒ 𝜏 Σ ⊢ 𝜏2 ↬ 𝜏2 𝜏 ▶ ̸∀

Σ; Γ ⊢ 𝑒 [𝜏2] ↬ L𝑒M⇒▶ ̸∀ [𝜏2] ⇒ ?

MSTypeAp2

Σ; Γ ⊢𝑀 𝑒 ⇒ 𝜏 Σ ⊢𝑀 𝜏2 𝜏 ▶ ̸∀

Σ; Γ ⊢𝑀 L𝑒M⇒▶ ̸∀ [𝜏2] ⇒ ?

The case studies above demonstrate that the framework of the marked lambda calculus is suitable

to support a variety of extensions to richer judgmental structures. We hope that this spurs language

designers to design marked variants of other calculi, following the recipe we have demonstrated:

starting with a gradual, bidirectional type system, by considering each possible failure case, one may

systematically derive the necessary error marks and marking rules. The metatheorems, particularly

totality, ensure that no rules or premises have been missed.

We leave as future work the task of defining marked versions of even more elaborate bidirectional

type systems, e.g., Dunfield and Krishnaswami [2013]’s rather substantial formulation of implicit

type application in a bidirectional setting (which would have to handle, for example, the situation

where no implicit argument can be resolved) or Lennon-Bertrand [2022]’s gradual bidirectional

variant of the dependently typed calculus of constructions. Languages with operator overloading

may provide interesting localization decisions. So that overloading can be resolved during typing

and marking, the modes of one or both operand must be changed to synthesis. If the operator is

not defined given the synthesized operand type(s), an error might be marked on the operator itself.

Type classes [Wadler and Blott 1989] present a symmetric alternative where the operands may stay

in analytic mode. In either approach, the necessary error marks and localization decisions may be

arrived at via the recipe we have described.

3 INTEGRATING MARKINGWITH EDITING
3.1 Hazel Implementation
We have implemented a marking system based on the marked lambda calculus as the foundation for

a new version of Hazel [Hazel Development Team 2023], a live functional programming environment

in which incomplete programs, i.e., programs that contain holes, may be type-checked, manipulated,
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and even executed. In particular, we have implemented marking for all of the features in the previous

section as well as Hazel’s 𝑛-tuples, lists, algebraic datatypes, general pattern matching, strings, and

explicit polymorphism (all following the same recipe we developed above). Hazel is implemented in

OCaml and compiles to Javascript via js_of_ocaml [Vouillon and Balat 2014] for use in the browser.

The supplemental material contains a pre-built implementation.

The result of this effort is the first full-scale typed functional language equipped with a language

server that solves the semantic gap problem: all of Hazel’s semantic services are available as long

as the program sketch is syntactically well-formed, which include type hints [Potter and Omar

2020], semantic navigation, semantic code completion [Blinn et al. 2022; Potter and Omar 2020],

contextualized documentation [Potter et al. 2022], and, because Hazel is able to evaluate programs

with empty and non-empty holes due to prior work [Omar et al. 2019], even semantic services that

require run-time information, like testing.

Hazel offers both a textual syntax, with explicit empty holes, and more interestingly, a structure

editor that is able to additionally offer partial syntactic error recovery. In particular, the tylr editor

uses a form of structured syntax error recovery that automatically insert empty holes to maintain

syntactic well-formedness as long as matching delimiters are placed by the user [Moon et al. 2022,

2023]. Efforts outside of the scope of this paper are underway to define syntactic error recovery

mechanisms that can handle unmatched delimiters as well, which would achieve total syntax error

recovery. In combination with our contributions, this would achieve the Hazel project’s stated goal

of ensuring that there are no meaningless editor states.

3.2 Fixing Holes in Hazelnut
Earlier versions of Hazel achieved total type error recovery by using a term-based structure editor,

which maintained delimiter matching by construction, albeit at the cost of some syntactic rigidity.

To specify such a structure editor formally, Omar et al. [2017a] introduced the Hazelnut action

calculus, which operates over a small bidirectionally typed lambda calculus extended with holes
and a cursor. The synthetic action judgment, written Γ ⊢ 𝑒 ⇒ 𝜏

𝛼−→ 𝑒′ ⇒ 𝜏 ′, performs an edit action

𝛼 on some zippered expression 𝑒 (which is an expression with a superimposed cursor, denoted 𝑒

in the original work) that synthesizes type 𝜏 , producing some new 𝑒′ that synthesizes types 𝜏 ′.
Type and binding information is propagated to the location of the cursor during these operations,

allowing them to insert the necessary error marks (i.e. non-empty holes, in Hazelnut’s parlance).

When, for example, wrapping an expression whose type is inconsistent with num in an arithmetic

operation, the calculus inserts an error mark around that operand:

𝜏 ≁ num

Γ ⊢ ⊲𝑒⊳ ⇒ 𝜏
construct plusL−−−−−−−−−−−→ L𝑒M≁ + ⊲LM⊳ ⇒ num

However, a significant issue with Hazelnut is that it does not allow—and simply leaves undefined—

actions that require non-local mark insertions or removals. For example, although the system can

wrap an arbitrary expression 𝑒 in an arithmetic operation, it cannot wrap it in a lambda abstraction,

i.e. construct 𝜆𝑥 : ? . 𝑒 directly from 𝑒 . The binding of 𝑥 with the unknown type may shadow a

previous binding and require the removal of error holes in the body. As a workaround, the calculus

includes manual mark insertion and removal actions.

The fundamental issue is that Hazelnut did not have a total marking system that it could deploy

to remark expressions where needed. The marked lambda calculus allows us to solve this problem,

in two different ways.

One approach is to define an untyped action calculus, wholly decoupling edit actions from typing.

Under this simplified design, the action calculus, given by a singular action judgment, written
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𝑒
𝛼−→ 𝑒′, is concerned only with the manipulation of syntax, and the total marking procedure

developed above yields statically meaningful terms with error marks inserted at the appropriate

positions as a kind of editor decoration. This solves the problem outlined above: since marking

operates on the entire program after each action, arbitrary constructions are permitted.

Alternatively, instead of a wholly untyped action calculus, one may directly integrate re-marking

logic into the typed Hazelnut calculus, making use of the type and scoping information being

propagated to re-mark only in positions where it might be necessary, in a roughly incremental

fashion. For example, we can wrap 𝑒 into 𝜆𝑥 : ? . 𝑒 by re-marking the body under the context with

𝑥 binding the unknown type:

ASEConLam

Γ, 𝑥 : ? ⊢ 𝑒□ ↬ 𝑒′ ⇒ 𝜏 ′

Γ ⊢ ⊲𝑒⊳ ⇒ 𝜏
construct lam 𝑥−−−−−−−−−−−→ 𝜆𝑥 : ⊲ ?⊳ . 𝑒′ ⇒ ? → 𝜏 ′

In this formulation, the action calculus is bidirectional and operates on zippered marked expressions,
written 𝑒 , where the cursor is superimposed atop marked expressions. With an analogous definition

of mark erasure on these expressions, the correctness of this typed action calculus may be defined

in relation to the behavior of the untyped variant.

The supplemental material contains a complete formal sketch of both variants, and the untyped

calculus and its related metatheory are mechanized in Agda. Because of the untyped variant’s

simplicity, and because marking is defined separately, this mechanization can serve universally

as a baseline for the correctness of approaches like the typed action calculus and perhaps other

analyses that minimize re-marking. We leave a complete assessment of this and other re-marking

optimization approaches to future work, particularly because Hazel is now moving toward the

decoupled approach for future development.

4 TYPE HOLE INFERENCE
Bidirectional typing, which has been our focus so far, reduces the number of necessary type

annotations and induces a local flow of information particularly well-suited to systematic error

localization decisions [Dunfield and Krishnaswami 2019; Pierce and Turner 2000]. In contrast,

constraint-based type inference as found in many ML-family languages allows programmers

to omit most or all type annotations [Pierce and Turner 2000]. The trade-off is that type error

localization and recovery become considerably more difficult, because inconsistencies can now

arise between constraints derived from many distant locations in a program. Heuristics aimed at

maximizing various optimization criteria are often employed to guess which uses of a variable are

consistent with the user’s intent and which should be marked erroneous [Pavlinovic et al. 2014;

Seidel et al. 2017; Zhang and Myers 2014].

This situation is reminiscent of the situation considered in Section 2.1.6 of inconsistent branches

in a conditional, where biasing one branch over the other requires guessing user intent, whereas the

neutral approach is to localize the inconsistency to the conditional expression as a whole. However,

there is no such parent expression in the case of inconsistent constraints gathered globally. This

search for neutrality when there are downstream conflicts motivates the approach we introduce in

this section, which gradually and neutrally harmonizes local and constraint-based type inference.

In particular, our type hole inference approach generates constraints on unknown types that arise

during the bidirectional marking process as described in Section 2. After this initial marking is

complete, we unify these constraints (using a standard unification algorithm, which we do not detail

here [Huet 1976]). When it is discovered that an unknown type is subject to inconsistent constraints,

we localize the problem to a hole in the program connected to that unknown type—either to a
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type hole directly, or to an empty or non-empty expression hole from which that unknown type

traces its provenance. The key result is that this approach is neutral by construction: it does not

attempt to guess at which relevant locations were consistent with the user intent. In Hazel, the

user can instead interactively investigate various partially consistent suggestions to clarify their

intent, which returns control to the bidirectional type system.

The primary goal of type hole inference is not to act as a standalone typechecker, but to provide

comprehensive suggestions for filling type holes in marked expressions. This requires that the

unification procedure succeed regardless of type inconsistencies encountered in marked expressions.

However, once this requirement is accounted for, we may use standard unification algorithms by

treating our type holes as type variables [Huet 1976].

4.1 Type Hole Inference in Hazel
Unlike in ML-family languages where constraint solving is an obligate part of typing, in Hazel it is

optional (i.e., it can be turned off) and is only invoked for solving for unknown types. For example,

in the following Hazel program in Figure 8, no constraint solving is necessary: bidirectional typing

determines that f : Int and the error is localized to the application of f as a function, as described

in Section 2. This coincidentally is also how the corresponding OCaml program would localize

the error, but for different reasons: OCaml would detect inconsistent constraints and favor the

constraints arising lexically first [McAdam 1999; Odersky et al. 1999; Pottier 2014].

Fig. 8. Error localization of this program in Hazel and OCaml is similar, but for different reasons.

The systems diverge in their capabilities if we explicitly add a type hole annotation to f. The

bidirectional system treats this as an unknown type and operates gradually, taking this as a signal

that the user has not yet determined the intended type of f. To help the user fill this type hole, the

system generates and attempts to unify the relevant constraints (see Section 4.3 below). In this case,

the constraints are inconsistent, i.e., there is no hole filling that satisfies all relevant constraints.

Rather than favoring constraints arising first, as in OCaml, the type hole itself is highlighted in

red and marked with a bang (!). The user is informed via the Type Inspector that the type hole

cannot be solved due to conflicting information from constraints. Figure 9 shows how the editor

temporarily fills the type hole when the user hovers over a constraint, deferring to bidirectional

error localization as described in Section 2 from there to cause the error to be marked on the 2

when hovering over the arrow type.

Fig. 9. The error is localized to the conflicted type hole in Hazel. Placing the cursor (⟩) on the conflicted type
hole populates suggestions in the cursor inspector. When hovering over an indicated suggestion, the hole is
transiently filled, causing the error to be localized to the bound expression, 2.
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If, given this feedback, the user deletes the bound expression, 2, then there are no longer con-

flicting constraints on the type hole and the system displays the inferred type in gray, to indicate

that it has been inferred rather than entered as “ground truth” by the user. The user can press the

Enter key to accept the suggestion (turning the text purple). We depict this flow below in Fig. 10.

At this point the hole has been filled and localization decisions again become local. Note that there

are no constraints on the return type of f, so the suggested filling itself contains a type hole (see

Section 4.4 below on polymorphic generalization).

Fig. 10. User removes ’2’ and accepts the new suggestion

It is also worth considering the situation where no type annotation is present, but the bound

expression is an empty expression hole. As an example of this, consider Fig. 11. Here, the type of x

is unknown according to the bidirectional system from Section 2. Type hole inference solves for

this unknown type as well, while tracking its provenance as the type of this expression hole. As

such, errors due to conflicting constraints can be localized to expression holes in much the same

way as described above. When the user hovers over a suggested type, there must be some way of

constraining the type of the expression hole, e.g., by finding a suitable variable to annotate with a

type or by adding direct ascription syntax to the language (we have not implemented this particular

user interface affordance in Hazel as of yet, but there are no fundamental barriers to doing so.) The

lightly mocked up process of suggestion is also illustrated below in Fig. 11.

Fig. 11. Localization of errors to expression holes.

4.2 Constraint Generation and Unknown Type Provenance
In order to generate global inference results, we begin with constraint generation. Our approach

closely follows the usual approach (cf. [Pierce 2002]), where we augment the bidirectional type

system for the marked lambda calculus with generated constraint sets, 𝐶 . The new judgement

forms are Γ ⊢ 𝑒 ⇒ 𝜏 | 𝐶 and Γ ⊢ 𝑒 ⇐ 𝜏 | 𝐶 .

Constraints, written 𝜏1 ≈ 𝜏2, force two incomplete types to be consistent. Consequently, our rules

for constraint generation are quite simple. We augment our previous bidirectional typing rules in

the marked lambda calculus to accumulate constraints describing necessary type consistencies. For

example, when synthesizing the type of an if expression, we constrain the types of expressions in

either branch to each other:

MSIf-C

Γ ⊢ 𝑒1 ⇐ bool | 𝐶1 Γ ⊢ 𝑒2 ⇒ 𝜏1 | 𝐶2 Γ ⊢ 𝑒3 ⇒ 𝜏2 | 𝐶3 𝜏3 = 𝜏1 ⊓ 𝜏2

Γ ⊢ if 𝑒1 then 𝑒2 else 𝑒3 ⇒ 𝜏3 | 𝐶1 ∪𝐶2 ∪𝐶3 ∪ {𝜏1 ≈ 𝜏2}
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The remaining rules for standard constructs are similarly standard and given in the supplement.

Since unification will be solving for unknown types, we must ensure we are able to distinguish

between different type holes based on their associated locus in the program. To this end, we make

two modifications to the system from Section 2:

(1) We add a unique id𝑢 to all expression holes and type holes that appear directly in the program

where we assume that id generation is handled by the editor.

(2) We add provenances 𝑝 to unknown types. Each provenance links the unknown type to

some (syntactic) hole in the program, perhaps through some intermediate operations. For

example, the provenance 𝑒𝑥𝑝 (3) indicates that a type hole must have been synthesized from

an expression hole with id 3 in the program.

Provenance 𝑝 F 𝑢 | 𝑒𝑥𝑝 (𝑢) |→𝐿 (𝑝) |→𝑅 (𝑝) | ×𝐿 (𝑝) | ×𝑅 (𝑝)
Type 𝜏 F · · · | ?

𝑝

MExp 𝑒 F · · · | L𝑥M𝑢□ | L𝑒M𝑢≁ | · · · | L𝑒M⇒, 𝑢
▶×̸

| L𝑒M⇒, 𝑢
▶×̸

| LM𝑢

Provenance is determined whenever a new unknown type is constructed. For example, we update

our matched arrow and product rules to add provenances to outputted type holes and introduce the

new matched arrow and product provenances so that every time a matched arrow type is generated

for the same hole, it involves the same constituent unknown types without necessitating fresh id

generation.

TMAHole-C

?
𝑝 ▶→ ?

→𝐿 (𝑝 ) → ?
→𝑅 (𝑝 ) | {?𝑝 ≈ ?

→𝐿 (𝑝 ) → ?
→𝑅 (𝑝 ) }

TMPHole-C

?
𝑝 ▶× ?

×𝐿 (𝑝 ) × ?
×𝑅 (𝑝 ) | {?𝑝 ≈ ?

×𝐿 (𝑝 ) × ?
×𝑅 (𝑝 ) }

Up until now, we have ignored rules that consider marked errors. This leads us to our second

point of interest: what do we do with expressions that have been marked with expression holes? A

marked expression has already been deemed erroneous. Therefore, when generating constraints,

we do not constrain sub-expressions within a marked hole based on types flowing in from outside

the hole. As a simple example of this, we present the standard rule for successful subsumption

alongside the rule for subsumption upon the failure of the consistency check:

MASubsume-C

Γ ⊢ 𝑒 ⇒ 𝜏 ′ | 𝐶 𝜏 ∼ 𝜏 ′ 𝑒 subsumable

Γ ⊢ 𝑒 ⇐ 𝜏 | 𝐶 ∪ {𝜏 ≈ 𝜏 ′}

MAInconsistentTypes-C

Γ ⊢ 𝑒 ⇒ 𝜏 ′ | 𝐶 𝜏 ≁ 𝜏 ′ 𝑒 subsumable

Γ ⊢ L𝑒M𝑢≁ ⇐ 𝜏 | 𝐶 ∪ {𝜏 ≈ ?
𝑒𝑥𝑝 (𝑢 ) }

The remaining rules directly follow the intuitions above and are left to the supplemental material.

4.3 Unification and Potential Type Sets
To unify constraints, we use a standard union-find based unification algorithm [Huet 1976; Siek

and Vachharajani 2008], which accumulates constraint information in PotentialTypeSets.
A PotentialTypeSet is a recursive data structure representing all of the potential fillings for an

associated incomplete type, inferred from type constraints. To facilitate this, rather than substi-

tuting types during unification, which results in a loss of information, we continuously merge

PotentialTypeSets. Since unification treats relations transitively, a property consistency lacks across

complete types, we avoid generating PotentialTypeSets for complete types and simply extend
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existing PotentialTypeSets with them as needed.

PotentialTypeSet 𝑠 F single(𝑡) | cons(𝑡, 𝑠)
PotentialType 𝑡 F num | bool | ?

𝑝 | 𝑠 → 𝑠 | 𝑠 × 𝑠

These choices allows us to continue past failures and unify any constraints, yielding an accumulated

corpus of information on each type hole’s potential solutions and errors through their associated Po-
tentialTypeSets. Each PotentialTypeSet can be scanned by the editor to identify potential solutions

or localize errors as illustrated in Fig. 9 and Fig. 10.

Note again that the novel contribution of this section is not in the particular unification algorithm

but rather the architectural decisions that allow us to neatly blend local and constraint-based type

inference systems for orthogonal purposes within the same system, and our focus on how to handle

inconsistent constraints. As such, we direct the reader to prior work for the algorithmic, formal,

and metatheoretic details of unification [Siek and Vachharajani 2008].

4.4 Polymorphic Generalization with Holes
In many type inference systems, unconstrained type inference variables (here, unknown types) are

automatically polymorphically generalized, so that functions can be given the most general type

[Garcia and Cimini 2015]. The same approach can be taken with type hole inference, but with one

particularly interesting wrinkle. With the inclusion of expression holes in our system, we need to

be a bit more careful about when we generalize. Consider the following expression:

𝜆𝑥 : ?
1 . LM2

We can see that ?
1
is not constrained. Suppose that we were to suggest the implicitly universally

quantified type variable
′𝑎 as a type hole filling for ?

1
. It is unlikely that the user accepts this

suggestion because it is unlikely that the user intends to write the identity function! The fact there

are not yet any constraints does not imply that there will not be once the expression hole is filled.

To address this, we need to reason as if there are any number of unknown constraints coming

from expression holes. This can be represented with a new type of constraint: the etc constraint,
which we add to our syntax of PotentialTypes below.

PotentialType 𝑡 F · · · | etc
When an expression hole appears, all unknown types in the typing context are constrained to

etc. This has no impact on unification, but if a type hole ?
𝑝
is constrained to etc, it cannot be

generalized. As before, more expansive discussion on unification with gradual typing including

polymorphism is left to prior work [Garcia and Cimini 2015].

5 RELATEDWORK
The contributions of this paper build directly on the Hazelnut type system [Omar et al. 2017a],

which is discussed extensively throughout. Non-empty holes in Hazelnut generalize to marks in

this work. In brief, we contribute a total marking procedure (Section 2) and type hole inference

scheme (Section 4) for a system based closely on Hazelnut, and use it to fix some expressiveness

issues in Hazelnut’s edit action calculus (Section 3).

Hazelnut is in-turn rooted in gradual type theory [Siek and Taha 2006; Siek et al. 2015]. We make

extensive use of (only) the static aspects of gradual typing—namely, the universal consistency of the

unknown type—to enable recovery from marked errors, which can leave missing type information.

Our focus was exclusively on static typing in this paper, and the results are relevant to the design

of language servers for any statically typed language, but it is worth noting that the results in

this paper, taken together with Hazel’s support for maintaining syntactic well-formedness using

structure editing [Moon et al. 2022, 2023] and for running programs with holes and marked errors
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[Omar et al. 2019], allow our implementation of Hazel to achieve total liveness: every editor state is

syntactically, statically, and dynamically meaningful, without gaps.

Type error localization is a well-studied problem in practice. This paper is the first to formally

support the intuition that, in the words of Dunfield and Krishnaswami [2019], “bidirectional typing

improves error locality.” Although there has been considerable folklore around error localization

for systems with local type inference, the problem has received little formal attention. We hope that

this paper, with its rigorous formulation of type error localization and recovery for bidirectionally

typed languages, will provide more rigorous grounding to language server development, much as

bidirectional typing has done for type checker development.

For systems rooted in constraint solving, there has been considerable work in improving error

localization because such systems are notorious for making error localization difficult, and pro-

grammers are often confused by localization decisions [Wand 1986] because they are rooted in ad
hoc traversal orders [Lee and Yi 1998; McAdam 1999]. More recently, there has been a series of

papers that discuss finding the most likely location for an error based on a maximum likelihood

criterion applied to type flows [Zhang and Myers 2014] or manual/learned weights [Pavlinovic et al.

2014; Seidel et al. 2017]. While improving the situation somewhat, these remain fundamentally ad
hoc in their need to guess the user’s likely intent. However, these approaches could perhaps be

layered atop type hole inference to improve the ranking or filtering of suggestions.

A more neutral alternative is to derive a set of terms that contribute to an error, an approach

known as type error slicing [Haack and Wells 2003; Schilling 2011; Tip and Dinesh 2001]. This

creates a large amount of information for the programmer to consume. Our approach is to instead

simply report the constraint inconsistencies on a hole in the program and allow for the programmer

to interactively refine their intent, so only the bidirectional type system is responsible for identifying

particular erroneous expressions. We do not make particular usability claims about the interactive

affordances related to type hole inference in this paper, but rather simply claim a novel neutral

point in the overall design space that uniquely combines local and global approaches.

Recent work on gradual liquid type inference described an exploratory interface for filling holes

in refinement types by selecting from partial solutions to conflicting refinement type constraints

[Vazou et al. 2018]. This is similar in spirit to type hole inference as described in this paper, albeit

targeting program verification predicates.

The underlying unification algorithm is essentially standard—the novelty is in how the unification

results are used and how failures are handled, rather than in the inference itself. In particular,

we base our approach on the system described by Siek and Vachharajani [2008], because it also

identifies type inference variables with the unknown type from gradual typing and the union find

data structure is useful for computing possible type sets. Garcia and Cimini [2015] similarly present

a static implicitly typed language, where users opt into dynamism by annotating an expression with

the gradual type "?", and an associated type inference algorithm and accompanying metatheory. By

contrast, the Hazelnut type system assigns gradual types to programs that would ordinarily not

type-check in a non-gradual system by wrapping them in expression holes. The type inference

algorithm presented in Garcia and Cimini [2015] also does not specify what to do if the constraint

set cannot be solved. If a single static type cannot be determined for an expression, its type is

simply undefined, whereas our approach provides a list of suggestions derived from any conflicting

constraints if a single substitution cannot be determined. As our focus is on failure cases and

partially consistent suggestions, the metatheory in this prior work is less relevant in guiding the

design of the type hole inference system.

Of note, however, is that approaches that eagerly solve and substitute for type inference variables

[McAdam 1999; Odersky et al. 1999; Pottier 2014] are not well-suited to the type hole inference

approach, as they lose information necessary for computing partially consistent suggestions.
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In the realm of error messages for constraint-based inference, work on the Helium Haskell

compiler [Heeren et al. 2003] offers two constraint solvers based on the desired feedback: a global,

type graph-based constraint solver which provides detailed error messages, and a lightweight and

high-performance greedy solver. When using the global constraint solver, various heuristics can

tune the likelihood of different parts of programs reported as error sources. Recently, Bhanuka et al.

[2023] model the flow of type information throughout the program using subtyping constraints to

produce detailed error messages when unification fails. Seidel et al. [2016] provide sample inputs

(dynamic witnesses) that elicit runtime errors. With this approach, one can generate graphs for

visualizing the execution of witnesses and heuristically identify the source of errors with around

70% accuracy. Our focus in this paper has not been on the error messages displayed on-screen,

about which we make no specific claims. It may, however, be beneficial in future work to indicate to

the user from where in the program type suggestions originated via our type provenances and by

incorporating the techniques in this prior work, e.g. to explain why a particular suggestion arises.

6 CONCLUSION
Nothing will ever be attempted if all possible objections must first be overcome.

– Samuel Johnson

Programming is increasingly a live collaboration between human programmers and sophisticated

semantic services. These services need to be able to reason throughout the programming process,

not just when the program is formally complete. This paper lays down rigorous type-theoretic

foundations for doing just that. Bidirectional type checking helps make the localization decisions

we make systematic and predictable, and type hole inference shows how local and constraint-based

type inference might operate hand-in-hand, rather than as alternatives. Throughout, we focused on

maintaining neutrality about user intent whenever possible. We hope that language designers will

use the techniques introduced in this paper to consider more rigorously, perhaps even formally,

the problems of type error localization and error recovery when designing future languages.
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