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Abstract. Live programming environments aim to provide rapid and continuous
feedback to developers, but this can be challenging when a program is incomplete.
Hazel is a live programming environment that aims to solve this problem by using
expression and type holes to stand for or wrap missing or erroneous terms. Hazel is
based on the Hazelnut Live calculus presented in prior work. This paper starts by
presenting Polymorphic Hazelnut Live, an extension of Hazelnut Live to support
explicit System F-style polymorphism. We show, with mechanized proofs in Agda,
that this extended system satisfies the key metatheoretic properties necessary for
live programming with typed holes. We compare the type system of Polymorphic
Hazelnut Live to other systems that combine gradual typing (i.e. the theory of type
holes) with polymorphism, pointing out subtleties related to parametricity and the
gradual guarantee. Finally, we present a method to integrate a form of implicit type
application into the Hazel architecture. By extending forthcoming work on mark
(i.e. error hole) insertion in Hazel, we develop a system in which the programmer
may omit explicit type applications, and the editor (rather than downstream tools
like the typechecker or compiler as is traditional) implicitly inserts and fills them,
allowing the user to see and override these actions as needed.

Submission Remarks. This is a draft paper submission. The work to be completed and
revised for formality are marked as conjectures. This is a student paper; Adam Chen and
Thomas Porter are students and are the main authors.

1 Introduction & Background

Live programming environments seek to provide programmers with continuous feedback
by analyzing and evaluating programs as they are being edited [24]. Some common
examples of live programming environments are Jupyter Notebooks [11] (which integrate
with several languages such as Julia, Python, and R), spreadsheets [25], and editor-
integrated debuggers [13]. However, one challenge to the live model is that in most
languages, incomplete programs do not have formal structure or meaning. Many IDEs
therefore either exhibit gaps in liveness or rely on heuristic error recovery methods to
reason about incomplete programs. This creates many situations where a programmer
may receive incomplete or incorrect information about their code as they are in the
process of editing it. In these cases, they must finish their edit then wait for the tool’s
analysis to update.

The Hazel programming language and environment [18] seeks to solve this problem
of reasoning about incomplete programs by define a formal semantics for expressions
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that can contain holes in expressions, patterns, and types (collectively, terms). Empty
holes stand for missing terms, while non-empty holes serve as marked membranes around
erroneous terms. The Hazel editor inserts these holes automatically [15; 19], and Hazel
is unique in assigning rich static and dynamic meaning to every editor state [19].

Hazel is based on a series of core calculi – Hazelnut and the marked lambda calculus,
which define a static semantics for programs with expression and type holes, and Hazelnut
Live, which defines a dynamic semantics for programs with expression and type holes.
These calculi combine and extend ideas from contextual modal type theory [16] and the
gradually typed lambda calculus [21].

The problem that motivates this work is that Hazelnut Live did not consider abstraction
over types, which is key to practical typed functional programming. Sec. 3 presents
Polymorphic Hazelnut Live, a polymorphic extension of Hazelnut Live [18] and Sec. 4
establishes that the key metatheoretic properties of Hazelnut Live, suitably modified to
account for type variables, are conserved, including type safety (in the presence of holes).
We also describe our mechanization of these metatheoretic properties in Agda, and discuss
the implementation into the Hazel programming environment. Sec. 5 discusses further
important metatheoretic properties that were not previously considered for Hazelnut
but that have been studied in the literature, namely parametricity [9] and the gradual
guarantee [22]. Type holes are known to weaken parametricity. We review this active
research area and discuss a weakening of strict parametricity that we conjecture should
hold for our system. In practice, it is cumbersome to explicitly apply type abstractions
and most major functional languages support implicitly inferred type applications. Sec. 6
approaches the problem of implicit type application in a unique way – by outlining an
in-progress edit-time implicit type application system for Hazel, whereby users can see
and intervene in the implicit application when desired rather than relying on invisible
implicit type application logic.

2 Background

The gradually-typed lambda calculus is an extension to the simply typed lambda calcu-
lus [4] that adds the gradual type (commonly notated as a question mark: ?) to the simply
typed lambda calculus, with type equivalence giving way to a (non-transitive) consistency
relation between types: the unknown type is consistent with every type [21; 22]. Gradual
typing offers a compromise between an untyped and a simply typed calculus; indeed, any
untyped term may be embedded into the gradually-typed calculus by typing everything
at the gradual type. This offers programmers the flexibility to work outside of the type
system when they deem it beneficial to do so, and the benefits of allowing this is exem-
plified in the success of TypeScript [3]. Siek et al. [22] later formalize some properties
that hold of the gradually-typed lambda calculus that make working in a gradually-typed
system intuitive for programmers. These properties collectively are known as the gradual
guarantee, and are the gold standard properties that are desirable for extensions of the
gradually-typed lambda calculus.

System F [8; 20] is another extension to the simply typed lambda calculus that
adds type functions and polymorphic types. System F has become the go-to model for
polymorphic functions, with restrictions of System F becoming the type systems for
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widely-used functional programming languages such as Haskell, OCaml, F#, and more.
One of the reasons System F is so powerful is the strong metatheoretic property of
parametricity [9]. Informally, parametricity asserts that a polymorphic function should
behave in analogous ways no matter what type the function is instantiated at. Intuitively,
this means that one cannot perform computations based on types, and indeed, parametric
systems allow for identical evaluation after type erasure [14], which can also be used as
a run-time optimization.

There have been several attempts to combine the gradually-typed lambda calculus
with System F. 𝜆𝐵, presented by Ahmed et al. [2], was the first system to add the gradual
type to a cast calculus based on System F while preserving parametricity. They achieved
this by using type bindings as opposed to type substitutions. In effect, this causes some
polymorphic functions to encounter cast error on all types when any instantiation would
error. (We will argue that this behavior is undesirable and investigate what metatheoretic
properties hold without type bindings.) This also introduces some run-time overhead.
System 𝐹𝐺, presented by Igarashi et al. [10], presents a user-facing gradually-typed
calculus that compiles to a cast calculus, akin to the gradually-typed lambda calculus.
System 𝐹𝐺 is shown to both be parametric as well as satisfy the gradual guarantee –
albeit for a modified notion of precision for polymorphic types. Parametric and gradual
system PolyG𝜈 , presented by New et al. [17], requires explicit sealing and unsealing
of type variables. The system is based on the intuition that parametricity arises from
disallowing computation on type. Gradual System F is a system presented by Labrada
et al. [12], which, like System 𝐹𝐺, also exhibits parametricity as well as the gradual
guarantee. Similarly to the previous systems, this is accomplished with the use of type
bindings. However unlike System 𝐹𝐺, a more intuitive notion of precision is defined. Out
of the previously presented systems, GSF is the most similar to the one we will present. It
is also worth noting the work of Xie et al. [26], who define a system that uses subtyping
to provide implicit polymorphism. Notably, their system violates the gradual guarantee
due to the necessity of an oracle for some ambiguous instantiations.

3 The System

The Hazelnut live system [18], in the tradition of gradually typed systems, presents a user-
facing gradually typed calculus that elaborates (i.e. compiles) into a cast calculus. We
extend both calculi from Hazelnut live with type variables, universal types, polymorphic
abstraction, and type application.

Type 𝜏 ∶∶= ... ∣ 𝛼 ∣ ∀𝛼. 𝜏
UExp 𝑒 ∶∶= ... ∣ Λ𝛼. 𝑒 ∣ 𝑒 [𝑒]
IHExp 𝑑 ∶∶= ... ∣ Λ𝛼. 𝑑 ∣ 𝑑 [𝑑]

Fig. 1: Syntax extension of polymorphic Hazel.
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With the introduction of the new type form, we define a corresponding matching
judgement to allow for expanding the gradual type into a forall form. Note that the gradual
type is identified with the type hole and is denoted ?.

𝜏▸∀∀𝛼. 𝜏 ′ 𝜏 has matched forall type ∀𝛼. 𝜏 ′

MFHOLE

?▸∀∀𝛼. ?

MFFORALL

∀𝛼. 𝜏▸∀∀𝛼. 𝜏

Fig. 2: Matched forall types.

3.1 Gradually Typed Calculus

We extend the bidirectional typing and elaboration rules as shown in Fig. 3 and Fig. 4.
We augment typing judgements with type variable contexts Σ, which are sets of type
variables in scope. Notably, type functions may be typed both analytically and syntheti-
cally. Annotated term functions synthesize types, while unannotated term functions only
analyze against types. Type functions may be thought of as having properties of both
annotated and unannotated functions, and therefore admit both analytic and synthetic
rules. This is a deviation from Dunfield and Krishnaswami [6]’s "bidirectional recipe", as
we only have a single introduction form for type functions in the type assignment rules.
We include both rules because doing so improves the power of the system (for example,
being able to synthesize the type of the polymorphic identity function Λ𝛼. 𝜆𝑥 ∶ 𝛼. 𝑥),
without compromising on its properties (refer to Sec. 4)4.

Σ; Γ ⊢ 𝑒 ⇒ 𝜏 Expression 𝑒 synthesizes type 𝜏 in context Σ; Γ

STLAM
Σ, 𝛼; Γ ⊢ 𝑒 ⇒ 𝜏

Σ; Γ ⊢ Λ𝛼. 𝑒 ⇒ ∀𝛼. 𝜏

STAP
Σ ⊢ 𝜏1 Σ; Γ ⊢ 𝑒 ⇒ 𝜏2 𝜏2▸∀∀𝛼. 𝜏3

Σ; Γ ⊢ 𝑒 [𝜏1] ⇒ [𝜏1∕𝛼]𝜏3

Σ; Γ ⊢ 𝑒 ⇐ 𝜏 Expression 𝑒 analyzes against type 𝜏 in context Σ; Γ

ATLAM
𝜏1▸∀∀𝛼. 𝜏2 Σ, 𝛼; Γ ⊢ 𝑒 ⇐ 𝜏2

Σ; Γ ⊢ Λ𝛼. 𝑒 ⇐ 𝜏1

Fig. 3: Bidirectional typing rules.

4 These rules match the polymorphic rules in [27], however we show a different set of properties,
such as elaborability, type safety, etc. The previous work also does not deal with the elaborated
internal expressions from these forms.
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Σ; Γ ⊢ 𝑒 ⇒ 𝜏 ⇝ 𝑑 ⊣ 𝑒 synthesizes type 𝜏 and elaborates to 𝑑 with hole context Δ

ESTLAM
Σ, 𝛼; Γ ⊢ 𝑒 ⇒ 𝜏 ⇝ 𝑑 ⊣ Δ

Σ; Γ ⊢ Λ𝛼. 𝑒 ⇒ ∀𝛼. 𝜏 ⇝ Λ𝛼. 𝑑 ⊣ Δ

ESTAP
Σ ⊢ 𝜏1 Σ; Γ ⊢ 𝑒 ⇒ 𝜏2 𝜏2▸∀∀𝛼. 𝜏3 Σ; Γ ⊢ 𝑒 ⇐ ∀𝛼. 𝜏3 ⇝ 𝑑 ∶ 𝜏4 ⊣ Δ

Σ; Γ ⊢ 𝑒 [𝜏1] ⇒ [𝜏1∕𝛼]𝜏3 ⇝ 𝑑⟨𝜏4 ⇒ ∀𝛼. 𝜏3⟩ [𝜏1] ⊣ Δ

Σ; Γ ⊢ 𝑒 ⇐ 𝜏1 ⇝ 𝑑 ∶ 𝜏2 ⊣ Δ 𝑒 analyzes against 𝜏1 and elaborates to 𝑑 of consistent type 𝜏2 with
hole context Δ

ATLAM
𝑒 is not a hole 𝜏1▸∀∀𝛼. 𝜏2 Σ, 𝛼; Γ ⊢ 𝑒 ⇐ 𝜏2 ⇝ 𝑑 ∶ 𝜏3 ⊣ Δ

Σ; Γ ⊢ Λ𝛼. 𝑒 ⇐ 𝜏1 ⇝ Λ𝛼. 𝑑 ∶ ∀𝛼. 𝜏4 ⊣ Δ

Fig. 4: Elaboration rules from external expressions to internal expressions.

Σ ⊢ 𝜏 𝜏 is well-formed in type variable context Σ

WFBASE

Σ ⊢ 𝑏

WFHOLE

Σ ⊢ ?

WFVAR
𝛼 ∈ Σ

Σ ⊢ 𝛼

WFARR
Σ ⊢ 𝜏1 Σ ⊢ 𝜏2

Σ ⊢ 𝜏1 → 𝜏2

WFFORALL
Σ, 𝛼 ⊢ 𝜏

Σ ⊢ ∀𝛼. 𝜏

Fig. 5: Well-formedness rules.
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Rule STAp has as a premise Σ ⊢ 𝜏1, the well-formedness of 𝜏1 with respect to Σ.
This new judgement must also be inserted as a premise into existing synthesis rules for
terms involving types, namely ascriptions and annotated lambdas. The well-formedness
judgement ensures that all type variables appearing in a term are either bound or appear
in the type variable context.

3.2 Elaboration & Cast Calculus

We extend the typed elaboration rules. The added rules are shown in Fig. 4. Type function
applications are elaborated in a way analogous to function applications. The function
is cast to the output of the matched type judgement to accommodate the gradual type,
and the function is analyzed against this type. We can omit any sort of type consistency
check since the language syntax guarantees that only types appear as the arguments to
type applications.

Δ;Σ; Γ ⊢ 𝑑 ∶ 𝜏 𝑑 is assigned type 𝜏

TATLAM
Δ;Σ, 𝛼; Γ ⊢ 𝑑 ∶ 𝜏

Δ;Σ; Γ ⊢ Λ𝛼. 𝑑 ∶ ∀𝛼. 𝜏

TATAP
Σ ⊢ 𝜏1 Δ;Σ; Γ ⊢ 𝑑 ∶ ∀𝛼. 𝜏2

Δ;Σ; Γ ⊢ 𝑑 [𝜏] ∶ [𝜏1∕𝛼]𝜏2

Fig. 6: Type assignment for internal expressions.

3.3 Dynamics & Final Forms

The universal type creates a new ground type case (Fig. 7). The ground type judgment is
used to simplify the range of final forms, presented in Fig. 8. We add new value, boxed
value, and indeterminate form cases for type functions and casts between universal types.
Each normal form is exactly one of these three kinds of final form, and further, indet
forms cannot occur in the absence of expression holes. This is formalized in Sec. 4 and
extends the analogous results in [18].

𝜏 ground 𝜏 is a ground type

GFORALL

∀𝛼. ? ground

𝜏▸ground𝜏 ′ 𝜏 has matched ground type 𝜏 ′

MGFORALL
∀𝛼. 𝜏 ≠ ∀𝛼. ?

∀𝛼. 𝜏▸ground∀𝛼. ?
Fig. 7: Ground and matched ground rules. The matched ground judgment is used in the
ITGround and ITExpand instruction transitions, which are not presented here as they are
not directly modified.
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𝑑 val 𝑑 is a value

VTLAM

Λ𝛼. 𝑑 val

𝑑 boxedval 𝑑 is a boxed value

VTLAM
∀𝛼1. 𝜏1 ≠ ∀𝛼2. 𝜏2 𝑑 boxedval

𝑑⟨∀𝛼1. 𝜏1 ⇒ ∀𝛼2. 𝜏2⟩ boxedval

𝑑 indet 𝑑 is indeterminate

ITAP
𝑑 ≠ 𝑑′

⟨∀𝛼1. 𝜏1 ⇒ ∀𝛼2. 𝜏2⟩ 𝑑 indet

𝑑 [𝜏] indet

ICASTFORALL
∀𝛼1. 𝜏1 ≠ ∀𝛼2. 𝜏2 𝑑 indet

𝑑⟨∀𝛼1. 𝜏1 ⇒ ∀𝛼2. 𝜏2⟩ indet

Fig. 8: Final form rules.

Operational semantics are given in the approach of contextual semantics (TODO:
cite for what this is). Evaluation contexts must be extended to allow for the new syntactic
forms. All that is required is to extend evaluation contexts into type function application,
and this is shown in Fig. 9.

Finally, we add new transition rules. Type functions applied to type are evaluated
in System F style of type substitution. Note that previous work [2; 10; 12; 17] avoided
this approach, instead choosing to keep a partial mapping from type variables to types.
A discussion of the decision to eschew this development and its implications for para-
metricity and graduality is contained in Sec. 5. In contrast with merely extending GTLC
with System F rules, we must add an additional rule that allows type function application
to move past casts. Such a rule may be written analogously to the rule for term func-
tions, albeit without any sort of consistency constraint on the type, which is syntactically
guaranteed to be valid. The instruction transitions are shown in Fig. 10. Finally, the step
relation 𝑑 ↦ 𝑑′ is defined by performing instruction transitions in an evaluation context;
this is typical of contextual semantics, and we introduce no modifications to the original
presentation, so it is not reproduced here.

EvalCtx  ∶∶= ... ∣  [𝜏]

𝑑 = {𝑑′} 𝑑 is obtained by placing 𝑑′ at the mark in  .

FHTAP
𝑑 = {𝑑′}

𝑑 [𝜏] =  [𝜏]{𝑑′}

Fig. 9: Changes to evaluation contexts.
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𝑑 ⟶ 𝑑′ 𝑑 takes an instruction transition to 𝑑′

ITTLAM

(Λ𝛼. 𝑑) [𝜏] ⟶ [𝜏∕𝛼]𝑑

ITTAPCAST

𝑑⟨∀𝛼1. 𝜏1 ⇒ ∀𝛼2. 𝜏2⟩ [𝜏] ⟶ 𝑑 [𝜏]⟨[𝜏∕𝛼1]𝜏1 ⇒ [𝜏∕𝛼2]𝜏2⟩

Fig. 10: Instruction transitions.

4 Type Safety

4.1 Type Safety

Our system conserves all of the typing properties that held of the original system (c.f.
Theorems 3.1 through 3.14 in [18]). To begin with, the bidirectional typing allows for
unique elaboration to a term of a consistent type:

Theorem 1. The following properties hold:

– Elaborability: any term typable by the bidirectional system has an elaboration.
1. If Σ; Γ ⊢ 𝑒 ⇒ 𝜏 then there exists an IHExp 𝑑 such that Σ; Γ ⊢ 𝑒 ⇒ 𝜏 ⇝ 𝑑 ⊣

Δ.
2. If Σ; Γ ⊢ 𝑒 ⇐ 𝜏 then there exists an IHExp 𝑑 such that Σ; Γ ⊢ 𝑒 ⇐ 𝜏 ⇝ 𝑑 ∶

𝜏′ ⊣ Δ.
– Elaboration Generality: the converse of the above is true.

1. If Σ; Γ ⊢ 𝑒 ⇒ 𝜏 ⇝ 𝑑 ⊣ Δ then Σ; Γ ⊢ 𝑒 ⇒ 𝜏.
2. If Σ; Γ ⊢ 𝑒 ⇐ 𝜏 ⇝ 𝑑 ∶ 𝜏′ ⊣ Δ then Σ; Γ ⊢ 𝑒 ⇐ 𝜏.

– Elaboration Unicity: elaboration of terms is unique.
1. If Σ; Γ ⊢ 𝑒 ⇒ 𝜏1 ⇝ 𝑑1 ⊣ Δ1 and Σ; Γ ⊢ 𝑒 ⇒ 𝜏2 ⇝ 𝑑2 ⊣ Δ2 then 𝜏1 =

𝜏2, 𝑑1 = 𝑑2, and Δ1 = Δ2.
2. If Σ; Γ ⊢ 𝑒 ⇐ 𝜏 ⇝ 𝑑1 ∶ 𝜏1 ⊣ Δ1 and Σ; Γ ⊢ 𝑒 ⇐ 𝜏 ⇝ 𝑑2 ∶ 𝜏2 ⊣ Δ2 then 𝜏1 =

𝜏2, 𝑑1 = 𝑑2, and Δ1 = Δ2.
– Typed Elaboration: the elaboration is consistent with the type assignment system.

1. If Σ; Γ ⊢ 𝑒 ⇒ 𝜏 ⇝ 𝑑 ⊣ Δ then Δ;Σ; Γ ⊢ 𝑑 ∶ 𝜏.
2. If Σ; Γ ⊢ 𝑒 ⇐ 𝜏 ⇝ 𝑑 ∶ 𝜏′ ⊣ Δ then Δ;Σ; Γ ⊢ 𝑑 ∶ 𝜏′ with 𝜏 ∼ 𝜏′.

– Type Assignment Unicity: type assignment assigns a unique type.
If Δ;Σ; Γ ⊢ 𝑑 ∶ 𝜏 and Δ;Σ; Γ ⊢ 𝑑 ∶ 𝜏′ then 𝜏 = 𝜏′

In short, these properties show that elaboration defines a unique embedding from
the user-facing gradually typed calculus into the typed cast calculus. Thus it is sufficient
[sufficient in order to what?] to reason solely about the cast calculus. We prove that the
system with the instruction transitions defined in Fig. 10 is type safe:

Theorem 2. The system presented in Sec. 3.2 is type safe:

1. Progress: If ∅ ⊢ Δ and Δ; ∅; ∅ ⊢ 𝑑 ∶ 𝜏 then either 𝑑 indet, 𝑑 boxedval, or there
exists an IHExp 𝑑′ such that 𝑑 ↦ 𝑑′.

2. Preservation: If ∅ ⊢ Δ, Δ; ∅; ∅ ⊢ 𝑑 ∶ 𝜏 and 𝑑 ↦ 𝑑′ then Δ; ∅; ∅ ⊢ 𝑑′ ∶ 𝜏.
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We say that a program (term) is complete if it does not contain any expression or type
holes. Complete programs are elaborated into internal expressions with only identity
casts and without type or expression holes. This fragment of internal expressions is
equivalent to System F, and therefore recovers its properties such as strong normalization.
These properties are formalized in the following theorem that our system conserves from
Hazelnut Live[18]:

Theorem 3. The following properties about complete programs hold:

1. Complete Elaboration: If Γ complete, 𝑒 complete, and Γ; Σ ⊢ 𝑒 ⇒ 𝜏 ⇝ 𝑑 ⊣ Δ
then 𝜏 complete, 𝑑 complete, and Δ = ∅.

2. Complete Preservation: If 𝑑 complete, Δ;Σ; Γ ⊢ 𝑑 ∶ 𝜏 , and 𝑑 ↦ 𝑑′ then
𝑑′ complete and Δ;Σ; Γ ⊢ 𝑑′ ∶ 𝜏

3. Complete Progress: If 𝑑 complete and Δ;Σ; Γ ⊢ 𝑑 ∶ 𝜏 then either 𝑑 val or there
exists an IHExp 𝑑′ such that 𝑑 ↦ 𝑑′.

Complete elaboration states that a complete program in the user-facing gradually
typed calculus elaborates into a complete program in the cast calculus. Complete preser-
vation states that the step relation preserves completeness as well as typing, and complete
progress states that every complete term is a val or can step. These properties along
with determinism (which is guaranteed by our contextual semantics) establish strong
normalization of complete programs, with the val predicate defining normal forms.

Note that while complete elaboration does not directly prove that all casts in elaborated
complete programs will be identity casts, since any cast between types that are not the
gradual type (which is not present due to completeness) is indet, and the system is
strongly normalizing to val, it cannot be the case that we evaluate casts between different
types.

4.2 Agda Mechanization

The system and a proof of all of the properties5 in this section are mechanized in Agda.
The code is available at https://github.com/hazelgrove/hazelnut-polymorphism-agda.

In the mechanization we are forced to deal with some details about type variable
binding names and alpha equivalence that we may gloss over in the formalization. We
make the simplifying assumption that binding names are unique, so that we do not have
to deal with capture-avoiding substitution. However, even when doing so, we found some
cases where the rules must explicitly allow for alpha variation to make sense, and thus
some results, like progress, are up to alpha equivalence.

Consider the following example:

𝑑⟨∀𝛼1. 𝛼1 ⇒ ∀𝛼2. 𝛼2⟩

It would not make sense for this example to be indet – the two types represented
are the same under alpha equivalence, while being unequal in syntax! But should this

5 As of writing of this draft, the proofs of preservation and complete preservation are incomplete
for some details on substitution typing. As we omit fill-and-resume and thus substitution typing
from our results, we will likely edit this out of the Agda prior to publication.
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step to 𝑑, the type changes from ∀𝛼2. 𝜏2 to ∀𝛼1. 𝜏1, and so preservation is up to alpha.
Furthermore, this term can arise from a function application with unique binding names,
so simple assumptions about binding names are insufficient.

Specifically, the rules that must allow for alpha variation, even assuming binder
names are advantageous, are:

– TAAp: In the typing term function application, the argument’s type may vary up to
alpha.

– TACast: When typing a type cast, the type being cast from may vary up to alpha
(this is implied by type consistency, which is itself up to alpha).

– TAFailedCast: When typing a failing type cast, the type being cast from may vary
up to alpha.

– ICastID: As in the motivating example above, when transitioning an identity cast,
the type may vary up to alpha.

– ICastSucceed: Similar to the previous case, but with a cast to ? in-between.

4.3 Implementation

We have fully implemented the polymorphic system into the Hazel programming envi-
ronment. Notably, the implementation coexists with other extensions to Hazelnut Live,
such as algebraic data types, recursion, type aliases, etc.; the combination of all of these
features has not been formalized. The implementation is done in ReasonML and uses
js_of_ocaml to compile to a website. The Hazel project is described, with a link to the
source code, at https://hazel.org.

The Hazel user interface is shown in Fig. 11. The user-facing gradually typed calculus
is input via a gradual structure editor that uses obligations (see [15]); for example,
inserting a typfun creates an obligation for a -> and inserts the appropriate expression
hole. Type function application is denoted with @< >.

Fig. 11: Screenshots of the current Hazel UI showing off polymorphic functions, including
the polymorphic identity and a rank-2 polymorphic function.

5 As of the writing of this draft, the code is still in a pull request, but it is soon-to-be merged. A
live demo of the implemented system is available at https://hazel.org/build/poly-adt-after2/.
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5 Metatheoretic Properties

5.1 Parametricity

As mentioned before, previous works imposed additional restrictions on the system in
order to preserve parametricity. These stem from the approach of Ahmed et al. [1], which
showed that substitution typing is not parametric, but the approach of using type bindings
is. The example to show this presented in [10] is thus:

𝑓 = Λ𝛼. 𝜆𝑥 ∶ num. 𝑥⟨num ⇒ LM ⇒ 𝛼⟩

Noting that
𝑓 [num] 1 ↦∗ 1
𝑓 [bool] true ↦∗ true⟨num ⇒ LM ⇏ bool⟩

where 1 boxedval, and true⟨num ⇒ LM ⇏ bool⟩ indet. Indeterminate forms correspond
to blame / errors in other calculi. By using type bindings, it would become the case that:

𝑓 [num] 1 ↦∗ 1⟨num ⇒ LM ⇏ 𝛼⟩

We argue that creating errors from otherwise sensibly executable programs is against
the spirit of gradual typing, and we would like to avoid doing so. Igarashi et al. [10]
further note that type bindings carry overhead, and they introduce static and gradual type
variables to allow for substitution typing when no cast to the gradual type exists. Our
system does not contain the labels on type variables; they complicate decisions for the
programmer, and also complicate the definition of consistency, which must now allow
for quasi-polymorphic functions to appear in places expecting polymorphic functions.
We furthermore argue that in out setting, since expressions can be holes that might be
filled in later, it is impossible to know a priori whether a static type variable label is
appropriate.

Since the approach of using type bindings (also used in systems such as GSF [12])
only enforces parametricity by introducing unnecessary error states, we instead focus on
weakening parametricity. We follow the construction of parametricity presented in [5].
The necessary definition and lemma are reproduced here, adapted to our setting:

Definition 1. =0 is a relation between terms taken to be the least congruence such that
for any 𝑑, 𝜏, and 𝜏′ we have that 𝜆𝑥 ∶ 𝜏. 𝑑 =0 𝜆𝑥 ∶ 𝜏′. 𝑑 and 𝑑 [𝜏] =0 𝑑 [𝜏′].

Proposition 1 (Parametricity Lemma). If 𝑑1 =0 𝑑2 then:

1. If 𝑑1 ↦∗ 𝑣1 and 𝑣1 boxedval then there exists 𝑣2 such that 𝑑2 ↦∗ 𝑣2 and
𝑣2 boxedval and 𝑣1 =0 𝑣2.

2. If 𝑑1 ↦∗ 𝑣1 and 𝑑2 ↦∗ 𝑣2 and 𝑣1 boxedval and 𝑣2 final then 𝑣2 boxedval and
𝑣1 =0 𝑣2

In this draft paper, we give two conjectures based off the form of the parametricity
lemma that express the metatheoretic properties we believe to hold of our system:

Conjecture 1. If 𝑒 complete and Σ; Γ ⊢ 𝑒 ⇒ 𝜏 ⇝ 𝑑1 ⊣ Δ and 𝑑1 =0 𝑑2 then:
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1. If 𝑑1 ↦∗ 𝑣1 and 𝑣1 boxedval then there exists 𝑣2 such that 𝑑2 ↦∗ 𝑣2 and
𝑣2 boxedval and 𝑣1 =0 𝑣2.

2. If 𝑑1 ↦∗ 𝑣1 and 𝑑2 ↦∗ 𝑣2 and 𝑣1 boxedval and 𝑣2 final then 𝑣2 boxedval and
𝑣1 =0 𝑣2

That is, if 𝑑 is the result of typed elaboration of a complete program, then 𝑑 is
parametric. This asserts that if we do not deal with graduality then we are able to ensure
full parametricity. We believe this to be true since typeable complete programs contain
only identity casts and thus may be embedded in System F, which is parametric.

Conjecture 2. If 𝑑1 =0 𝑑2 then:

1. If 𝑑1 ↦∗ 𝑣1 and 𝑣1 boxedval then there exists 𝑣2 such that 𝑑2 ↦∗ 𝑣2 and either
(𝑣2 boxedval and 𝑣1 =0 𝑣2) or 𝑣2 indet.

2. If 𝑑1 ↦∗ 𝑣1 and 𝑑2 ↦∗ 𝑣2 and 𝑣1 boxedval and 𝑣2 boxedval then 𝑣1 =0 𝑣2

In other words, all terms exhibit parametricity up to successful termination. Note
the added disjunct in item 1. This conjecture means that, should we know the program
successfully terminates, then we recover parametricity. Thus the only violations we get
of parametricity are run-time cast errors, and thus solely from not erroring otherwise
successfully executing programs.

5.2 Gradual Guarantee

Suppose we are given a notion of precision between external terms and types ⊑. We take
the statement of the gradual guarantee from Siek et al. [22] and adapt it to our notation:

Definition 2. Suppose ∅; ∅ ⊢ 𝑒 ⇒ 𝜏 and ∅; ∅ ⊢ 𝑒 ⇒ 𝜏 ⇝ 𝑑 ⊣ Δ. We say 𝑒 ⇓ 𝑣 when
𝑑 ↦∗ 𝑣 and 𝑣 boxedval. We say 𝑒 ⇑ when there does not exist a 𝑣 such that 𝑑 ↦∗ 𝑣 and
𝑣 final (in other words, 𝑑 diverges).

Proposition 2 (The Gradual Guarantee). Suppose 𝑒 ⊑ 𝑒′ and ∅; ∅ ⊢ 𝑒 ⇒ 𝜏.

1. There exists a 𝜏′ such that ∅; ∅ ⊢ 𝑒′ ⇒ 𝜏′ with 𝜏 ⊑ 𝜏′.
2. If 𝑒 ⇓ 𝑣 with 𝑣 boxedval then 𝑒′ ⇓ 𝑣′ with 𝑣′ boxedval and 𝑣 ⊑ 𝑣′.

If 𝑒 ⇑ then 𝑒′ ⇑.
3. If 𝑒′ ⇓ 𝑣′ with 𝑣′ boxedval then 𝑒 ⇓ 𝑣 such that either 𝑣 boxedval and 𝑣 ⊑ 𝑣′ or

𝑣 indet.
If 𝑒′ ⇑ then 𝑒 ⇑ or 𝑒 ⇓ 𝑣 with 𝑣 indet.

Of course, what the guarantee establishes depends on the definition of ⊑. Recall
that our setting is that of a live programming environment. Thus we would like become
more precise to coincide with the intuitive idea of the programmer filling in type holes.
Thus we do not want a definition similar to System 𝐹𝐺 [10]’s, but rather one closer to
GSF [12]’s. Such a definition is provided in Fig. 126.

6 Note that in the PForall rule, for convenience, we assume the binding names on the left and
right match. For a more general treatment of binding names, we would introduce binding
environments.
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PBASE

𝑏 ⊑ 𝑏

PHOLE

𝜏 ⊑ ?

PTVAR

𝛼 ⊑ 𝛼

PARR
𝜏1 ⊑ 𝜏 ′1 𝜏2 ⊑ 𝜏 ′2
𝜏1 → 𝜏2 ⊑ 𝜏 ′1 → 𝜏 ′2

PFORALL
𝜏 ⊑ 𝜏 ′

∀𝛼. 𝜏 ⊑ ∀𝛼. 𝜏 ′

Fig. 12: Precision between types

Conjecture 3. The gradual guarantee holds of Polymorphic Hazelnut Live with the
provided precision relation.

Intuitively, if the previous result about parametricity holds, then the only cases in
which programs do not behave like their type erased version are when they evaluate to
indet, i.e. a cast failure. Due to the canonical forms, casts fail when inconsistent types
are cast to each other. But since the gradual type is consistent with any type, replacing
types with less precise types can only create cases where previously failing casts succeed,
rather than making previously successful casts fail. Conversely, if we replace types with
more precise types (intuitively, replacing type holes with concrete types), we can only
turn previously successful casts, either a composition of casts through the gradual type
or the identity cast on the gradual type, into now failing casts. These correspond to
items 2 and 3 of the gradual guarantee, sometimes referred to as the dynamic gradual
guarantee. In short, since we never introduce types from outside the program syntax, we
have good reason to believe that the gradual guarantee holds. Furthermore, our system is
very similar to GSF, which is known to satisfy the gradual guarantee.

6 Towards Implicit Polymorphism

For practical programming purposes, it is burdensome to write explicit type applica-
tions for each use of a polymorphic term. Therefore usable languages adopt implicit
polymorphism, in which the type applications are left out of the concrete syntax, and
the instantiated types are statically inferred. There exist bidirectional calculi for implicit
polymorphism, such as [7], which we could have chosen to gradualize in the same manner
as we gradualized explicit System F above.

Instead we propose to take advantage of the structured editing capabilities of Hazel.
The widespread practice of implicit language features represents a compromise between
the interests of the language user and the language developer. The user benefits by
typing and seeing less code, and by achieving more flexible code, at the cost of language
transparency, consistency, and control. The implementer benefits by maintaining the
same user interface and language architecture, only needing to insert an instantiation
phase in the language processing pipeline.

We believe that by improving the programming environment architecture, this com-
promise can in turn be improved. Hazel is a gapless editor, meaning that at every point
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in time, syntactic information, static information, and all downstream services are main-
tained by the editor. In this context we propose a system of implicit polymorphism in
which the editor maintains appropriate type applications in the visible surface syntax
of the program. This improves the transparency and regularity of the language while
retaining the ease of editing and flexibility of implicit systems.

For example, this system would ideally insert the blue type applications into the
program below, supposing that 𝑓 ∶ 𝐴 → 𝐵 and 𝑙 ∶ 𝐴 list.

𝑚𝑎𝑝 [𝐴] [𝐵] (𝑓 ) (𝑙)

These type applications could be folded by default to avoid cluttering the screen with
useless information. Despite this diminution of the type application forms, the proposed
strategy is distinct from usual implicit schemes because the persisted program will retain
the inferred type applications, and because the user will be able to see and edit the type
arguments if needed. Figures 13 - 16 display mock ups of various editor states in a
hypothetical version of Hazel with implicit polymorphism.

Fig. 13: Hypothetical behavior: when a type application insertion succeeds, the type
arguments are listed along with the type of the polymorphic term. An ellipsis mark
indicates folded code and provides a way to examine it.

Fig. 14: Hypothetical behavior: when the ellipsis mark is selected, it expands to reveal
the explicit type applications and arguments that have been inserted by the editor. If this
code is edited by the user, it becomes fully explicit and is colored accordingly.

Fig. 15: Hypothetical behavior: when a type application insertion fails, the conflicted
type arguments are indicated. The ellipsis mark signals an error.
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Fig. 16: Hypothetical behavior: the editor displays the conflicting required refinements of
the unfillable type argument hole. If the user hovers over or selects one of the refinements,
it will be applied to the hole, resulting in errors elsewhere in the code.

6.1 Mark Insertion

A forthcoming paper ([27]) describes the “mark insertion" component of the Hazel archi-
tecture. Hazel programs begin as unmarked expressions 𝑒, corresponding exactly to the
external expressions in [18] except that they do not contain nonempty holes. Next comes a
bidirectionally typed mark insertion phase, with judgement forms Σ; Γ ⊢ 𝑒 ↬ 𝑒 ⇒ 𝜏 and
Σ; Γ ⊢ 𝑒 ↬ 𝑒 ⇐ 𝜏. Each unmarked expression 𝑒 is mapped to a corresponding marked
expression 𝑒, which is identical to 𝑒 except for the presence of annotated nonempty holes
called marks. Both unmarked and marked expressions have typing rules, and the mark
insertion phase inserts the minimal marks needed to produce a well-typed result, essen-
tially sectioning off ill-typed subexpressions with informatively annotated nonempty
holes. After mark insertion comes the elaboration and evaluation stages first described in
[18] and extended to include polymorphism in Sec. 3.

Σ; Γ ⊢ 𝑒 ↬ 𝑒 ⇒ 𝜏 𝑒 is marked into 𝑒 and synthesizes type 𝜏

⋯

MKSTYPELAM
Σ, 𝛼; Γ ⊢ 𝑒 ↬ 𝑒 ⇒ 𝜏

Σ; Γ ⊢ Λ𝛼. 𝑒 ↬ Λ𝛼. 𝑒 ⇒ ∀𝛼. 𝜏

MKSTYPEAP1
Σ; Γ ⊢ 𝑒 ↬ 𝑒 ⇒ 𝜏 Σ ⊢ 𝜏2 ↬ 𝜏2 𝜏▸∀∀𝛼. 𝜏1

Σ; Γ ⊢ 𝑒 [𝜏2] ↬ 𝑒 [𝜏2] ⇒ 𝜏1[𝜏2∕𝛼]

MKSTYPEAP2
Σ; Γ ⊢ 𝑒 ↬ 𝑒 ⇒ 𝜏 Σ ⊢ 𝜏2 ↬ 𝜏2 𝜏▸̸∀

Σ; Γ ⊢ 𝑒 [𝜏2] ↬ L𝑒M⇒
▸̸∀

[𝜏2] ⇒ ?

Σ; Γ ⊢ 𝑒 ↬ 𝑒 ⇐ 𝜏 𝑒 is marked into 𝑒 and analyzes against type 𝜏

⋯

MKATYPELAM1
𝜏▸∀∀𝛼. 𝜏 ′ Σ, 𝛼; Γ ⊢ 𝑒 ↬ 𝑒 ⇐ 𝜏 ′

Σ; Γ ⊢ Λ𝛼. 𝑒 ↬ Λ𝛼. 𝑒 ⇐ 𝜏

MKATYPELAM2
𝜏▸̸∀ Σ, 𝛼; Γ ⊢ 𝑒 ↬ 𝑒 ⇐ ?

Σ; Γ ⊢ Λ𝛼. 𝑒 ↬ LΛ𝛼. 𝑒M⇐
▸̸∀

⇐ 𝜏

Fig. 17: Polymoprhic Mark Insertion Rules

Fig. 17 contains the mark insertion rules for the polymorphic fragment, which can
also be found in the appendix of [27]. The other mark insertion rules are similarly related



16 Adam Chen , Thomas Porter, and Cyrus Omar

to the basic typing rules. For each typing rule, there is a mark insertion rule that inserts
no marks in the case that the premises of the typing rule are met. Each check in the
premise of a typing rule gives rise to an additional mark insertion rule which inserts an
appropriate mark when the check fails.

The mark insertion judgement satisfies desirable metatheoretic properties. These
properties include totality and unicity, which mean that the insertion operation is a total
function on unmarked expressions. Mark insertion also satisfies the property that it only
generates well-typed terms, and that erasing marks from the marked term recovers the
original term. The mark insertion process is also guaranteed to not affect terms that
already type check, and to insert at least one mark into terms that do not type check.

6.2 Type Application Insertion

We enrich the mark insertion phase so that it also inserts type applications with a type
hole as the argument, in locations deemed necessary by the bidirectional typing flow.
When a polymorphic term is found, but is inconsistent with the expected type or type
former, a type application may be inserted rather than a marked nonempty hole. The
new rules for these insertions are described in Fig. 18. These rules replace the previous
rules for applications, projections, and subsumption presented in [27]. The insertion of
type applications could have been presented equivalently as a phase that follows mark
insertion, and only transforms programs at the location of certain marks. However, the
synthesized and analyzed types would be the same in both phases, so presenting them as
separate would imply a large degree of redundant computation.

The insertion rules for polymorphism are derived from the mark insertion rules in
[27]. The rules that have been updated are those with a premise of the form 𝜏▸→𝜏1 → 𝜏2,
𝜏▸↛, 𝜏▸×𝜏1 × 𝜏2, 𝜏▸̸×, 𝜏 ∼ 𝜏1, or 𝜏 ≁ 𝜏1, where 𝜏 and none of the other types involved
is synthesized from a subexpression of the expression being marked. These conditions
correspond to an opportunity to insert a type application that may avoid a failed type
matching or consistency check, and thereby avoid a mark insertion.

The mark insertion rule for conditionals involves a consistency check between the
types synthesized from the branches of the conditional. It is possible to write valid
type application insertion rules for conditionals, but we have omitted such a discussion
for brevity and because it is not clear what should be done in the case of inconsistent
polymorphic branches.

In order to gauge when it is appropriate to insert a type application, we introduce
a prenex erasure operation ∀□(𝜏), which erases all leading ∀. constructors of 𝜏 and
replaces their bound variables with ?. If a type matching or consistency check fails on
the originally synthesized type, the check is retried on the prenex erased type. This new
check corresponds to whether, according to the structure of the type, it may be possible
to pass the type matching or consistency check after type applications are inserted around
the subexpression.

The new rules are designed so that the new mark and type application insertion
operation retains most desirable metatheoretic properties of the original mark insertion
operation. The combined insertion phase should still be total function, generate well-
typed terms, and not affect terms which already type check. However, it is no longer the
case that the operation’s only effect is the insertion of marks. The updated properties state
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∀□(𝜏1) = 𝜏2 Prenex erasure operation

PEFORALL

∀□(∀𝛼. 𝜏) = ∀□(𝜏[? ∕𝛼])

PEUNKNOWN

∀□(?) = ?

PENOTMATCHED
𝜏▸̸∀

∀□(𝜏) = 𝜏

Σ; Γ ⊢ 𝑒 ↬ 𝑒 ⇒ 𝜏 Synthetic marking judgement

INSERTSAP1
Σ; Γ ⊢ 𝑒1 ↬ 𝑒1 ⇒ 𝜏1 𝜏1▸→𝜏2 → 𝜏3 Σ; Γ ⊢ 𝑒2 ↬ 𝑒2 ⇐ 𝜏2

Σ; Γ ⊢ 𝑒1 𝑒2 ↬ 𝑒1 𝑒2 ⇒ 𝜏3

INSERTSAP2
Σ; Γ ⊢ 𝑒1 ↬ 𝑒1 ⇒ 𝜏 𝜏▸↛ ∀□(𝜏)▸→𝜏3 → 𝜏4 Σ; Γ ⊢ 𝑒1 [?] 𝑒2 ↬ 𝑒3 ⇒ 𝜏2

Σ; Γ ⊢ 𝑒1 𝑒2 ↬ 𝑒3 ⇒ 𝜏2

INSERTSAP3
Σ; Γ ⊢ 𝑒1 ↬ 𝑒1 ⇒ 𝜏 ∀□(𝜏)▸↛ Σ; Γ ⊢ 𝑒2 ↬ 𝑒2 ⇐ ?

Σ; Γ ⊢ 𝑒1 𝑒2 ↬ L𝑒1M
⇒

▸↛
𝑒2 ⇒ ?

INSERTSPROJ1
Σ; Γ ⊢ 𝑒 ↬ 𝑒 ⇒ 𝜏 𝜏▸×𝜏1 × 𝜏2

Σ; Γ ⊢ 𝜋1𝑒 ↬ 𝜋1𝑒 ⇒ 𝜏1

INSERTSPROJ2
Σ; Γ ⊢ 𝑒 ↬ 𝑒1 ⇒ 𝜏 𝜏▸̸× ∀□(𝜏)▸×𝜏3 × 𝜏4 Σ; Γ ⊢ 𝜋1(𝑒 [?]) ↬ 𝑒2 ⇒ 𝜏2

Σ; Γ ⊢ 𝜋1𝑒 ↬ 𝑒2 ⇒ 𝜏2

INSERTSPROJ3
Σ; Γ ⊢ 𝑒 ↬ 𝑒 ⇒ 𝜏 ∀□(𝜏)▸̸×

Σ; Γ ⊢ 𝜋1𝑒 ↬ 𝜋1L𝑒M
⇒

▸̸×
⇒ ?

Σ; Γ ⊢ 𝑒 ↬ 𝑒 ⇐ 𝜏 Analytic marking judgement

INSERTASUBSUME1
Σ; Γ ⊢ 𝑒 ↬ 𝑒 ⇒ 𝜏1 𝜏1 ∼ 𝜏2 𝑒 subsumable

Σ; Γ ⊢ 𝑒 ↬ 𝑒 ⇐ 𝜏2

INSERTASUBSUME2
Σ; Γ ⊢ 𝑒 ↬ 𝑒1 ⇒ 𝜏1

𝜏1 ≁ 𝜏2 ∀□(𝜏1) ∼ 𝜏2 Σ; Γ ⊢ 𝑒 [?] ↬ 𝑒2 ⇐ 𝜏2 𝑒 subsumable

Σ; Γ ⊢ 𝑒 ↬ 𝑒2 ⇐ 𝜏2

INSERTAINCONSISTENTTYPES
Σ; Γ ⊢ 𝑒 ↬ 𝑒 ⇒ 𝜏1 𝜏1 ≁ 𝜏2 ∀□(𝜏1) ≁ 𝜏2 𝑒 subsumable

Σ; Γ ⊢ 𝑒 ↬ L𝑒M≁ ⇐ 𝜏2

Fig. 18: Implicit insertion.
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that erasing all marks and some subset of the type applications recovers the original term,
and that the insertion operation applied to a term that does not type check produces a term
that includes either a mark or a type application. These properties remain conjectural for
the new system, but they should be straightforward to prove.

6.3 Type Arguments

The type application insertion process described above simply inserts type holes as
arguments, which is not satisfactory for handling type errors that arise from implicit
polymorphic code. Therefore we propose a static phase for instantiating type arguments,
which occurs after mark and type application insertion and before elaboration into the
internal calculus. Ideally this phase would simply reuse type hole inference machinery
from [27], which uses constraints on type holes during the mark insertion phase to
generate the possible fillings for the type holes that appear in the program. When the
constraints for an inserted type hole contain no conflicts, the editor would automatically
fill the hole accordingly. When there are conflicts, the same user interface that appears
in [27] would be used to convey this information to the user, who could then select an
option for filling the hole.

Unfortunately, the type hole inference technique dose not directly generalize to the
polymorphic setting. As the type level of System F is isomorphic to the untyped lambda
calculus, the constraints on type holes comprise general higher-order unification problems,
the solution of which is uncomputable. We therefore cannot immediately implement the
system of implicit polymorphism outlined in this section. For example, the code below
generates the higher order unification problem ?1 (?3) = ?2, where application between
types is defined so as to obey the obvious beta rule.

let 𝑓 ∶ ?1 = LM in let 𝑥 ∶ ?2 = 𝑓 [?3] in LM

7 Related and Future Work

Polymorphic Type Hole Inference. While it is impossible to completely solve the higher
order unification problem of inferring type hole values in polymorphic Hazel, it may be
possible to devise a satisfactory partial solution. Just as the general undecidability of type
inference for System F does not preclude effective partial solutions based on heuristics, it
seems plausible that an incomplete yet practical type hole inference mechanism may be
developed to enable implicit polymorphic workflows in Hazel. In this case, the suggestions
of the editor will not be complete in all cases, but will be sound and often helpful. We
leave the development of such an extension to future work.

Fill and Resume. Hazelnut Live [18] presented a notion of fill-and-resume. That is,
that a program could be evaluated, after which the programmer fills in (i.e. replaces) a
hole with a valid expression. Then, because program evaluation is pure, the operation of
program reduction commutes with replacing the hole, so the evaluator can replace the
corresponding hole(s) in the evaluated expression, and continue evaluating. This required
a notion of tracking substitutions that occurred in the closure around holes, and replaying
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those substitutions on the newly provided expression. These substitutions were a part of
the cast calculus, and their validity were checked via substitution typing, which is used
as a premise to type assignment on holes.

We do not argue for the correctness of fill-and-resume in this work, but we conjecture it
to still be valid. This is because our system is still pure, so evaluation should still commute
with hole filling. There are subtle issues with naively extending substitution typing. It is
clear the substitutions must now also track type substitutions. Term substitutions that
happen after a type substitution may have their typing affected, and it is not immediately
obvious how to account for this with a static typing judgment. An analogous problem
does not exist in the original formulation, since substituting in sub-terms does not change
the type of a term, which is all that is tracked in the substitution typing.

Thus, we leave proving validity of fill-and-resume with corresponding substitution
typing judgments as future work.

Implicit Polymorphism. We have provided a system for allowing polymorphic terms
to be used without an explicit type application, as with implicit polymorphism. Yet
this editor service does not address implicit polymorphism on a theoretical level, and
may fail to catch type errors that a truly implicit system can. As seen in Xie et al. [26],
implicit polymorphism may force instantiations that cause error that may be resolved
with additional typing information, violating the gradual guarantee. As far we know, the
problem of a gradually parametric implicit polymorphic system has yet to be solved. We
are interested in whether such a system exists, and whether the solution to this problem
relates to the problems described previously and could be adapted to type hole inference.

References. References see popular use even in functional programming languages, such
as the ML family of languages. However, references have not yet been implemented into
the Hazel programming environment, nor has there been development on the theory of
how references interact with expression holes. Siek et al. [23] have shown that references
can work with the gradually typed lambda calculus. The authors are unaware of any work
that adds references to a polymorphic gradually typed calculus.

It appears that combining graduality, polymorphism, hole expressions, and references
creates unique problems; for example, one may populate the type ∀𝛼. 𝛼 ref with the term
Λ𝛼. ref(LM), which is not possible otherwise. Such examples that create a new reference
with each type function application may preclude future attempts at type erasure run-time
semantics, which are otherwise a promising optimization as shown in [10].
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the preliminary implementation of type functions and polymorphic types in the Hazel
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