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Addressing the climate crisis poses many computing challenges—including continuous data in-
gestion, transformation, and analysis—intertwined with significant human factors challenges—
planetary computing is a large-scale effort involving many stakeholders, many of whom are not CS
experts but rather scientists, policymakers, journalists, and members of the public. Contemporary
programming ecosystems, which offer a patchwork of aging low-level tools, may not be up to the
task of developing a modern planetary compute engine [Holcomb et al. 2023]. In particular, we
believe that a planetary computing engine must be live, rich, and composable [Horowitz and Heer
2023] to systematically address critical limitations of existing patchwork solutions while enabling
new capabilities. Additionally, it must be ubiquitously and accessibly collaborative, operating as a
shared medium for initial data ingestion and cataloging by data engineers, exploration and interac-
tive analysis by ecologists, curation of methods maintained by statisticians, active decision-making
by policy experts, and investigation and critique by journalists and the public. We believe the Hazel
project (https://hazel.org/) provides a uniquely practical foundation for designing a next-generation
live, rich, composable, and collaborative planetary compute engine. Fig. 1 is a mockup of Hazel,
demonstrating our initial vision for some of the key capabilities outlined above. Let us go through
these in more detail.

Live environments provide the programmer with feedback based on dynamic program behavior
continuously, during the editing process [Tanimoto 2013]. This is critical to support exploratory
data analysis, as has been shown by the proliferation of live computational notebooks such as
Jupyter [Perez and Granger 2007]. In climate analysis, it is also important that analyses can ingest
live data from various data sources. Hazel is a functional programming environment that supports
totally live evaluation, i.e. there are never any gaps in execution even in the presence of localized
errors [Omar et al. 2019]. This provides a unique platform for productively performing exploratory
climate data analysis and ensuring that these analyses are kept up-to-date as new data is ingested
and new analyses are incrementally developed and systematically compared [Omar et al. 2014].
Hazel’s mathematically structured (i.e. functional) execution model stands in contrast to that of
imperative languages like Python, where unnecessary reliance on state leads to (1) the problem of
results being inconsistent with the code as it appears, limiting reproducibility, and (2) difficulties
with automatic incremental execution [Chattopadhyay et al. 2020]. In the example in Fig. 1, the data
is loaded from an external source and kept live and up-to-date, with updates functioning essentially
as edits to a literal table in the program and with downstream re-execution occurring automatically.
Scaling up Hazel’s live execution engine to support this user workflow even for large and rapidly
updating datasets using distributed computing resources is a potentially fruitful research direction.
Climate science uses a number of domain-specific data structures and visual representations,

such as maps, diagrams, complex plot structures, and compositions of these. Many existing envi-
ronments including Jupyter allow for domain-specific data visualizations to be generated from an
end-user analysis. However, these visualizations are usually only minimally interactive and need

Authors’ addresses: Alexander Bandukwala, alexander@bandukwala.me, Unaffiliated, USA; Andrew Blinn, blinnand@
umich.edu, University of Michigan, USA; Cyrus Omar, comar@umich.edu, University of Michigan, USA.
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2 Alexander Bandukwala, Andrew Blinn, and Cyrus Omar

Fig. 1. A depiction of an analytical exploration of Marine Protected Areas in Planet Hazel, a hypothetical
version of Hazel geared towards planetary computing. A spectrum of stakeholders collaborate over live data
in real time, composing visualizations, code, and rich text to create a cooperative computational artifact.
Technical stakeholders may use general-purpose programming and - by selectively exposing parts of their
code as customizable interactive visualizations - extend the capabilities of non-technical stakeholders and
foster a skill-continuous medium for analysis, presentation, and conversation. The right-hand sub-figures
depict three stakeholder scenarios: In (A) a nontechnical journalist uses an embedded GUI to change a graph
without editing code. A data scientist (B) inspects a sub-component of a parametric visualization to update the
code defining it. A policymaker (C), checks their understanding of a measurement by following a transcluded
figure back to its definition.
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to be built and modified using generic plain-text code. Hazel, in contrast, supports livelits (live liter-
als)[Omar et al. 2021], which allow programs themselves to contain live and rich domain-specific
representations that can be fed data and manipulated directly, such as by navigating and selecting
GIS (geographic information system) data using a map interface or by manipulating sliders, plot
parameters, and tables such as in Fig. 1. Each livelit can also generate data that can be used in
downstream computations. The move towards more domain-oriented editing could lower the need
for technical expertise to make simple localized changes to a program while also reducing the
cognitive overhead for expert and novice technical users alike.
In addition to richness and liveness, livelits support composability by allowing for embedded

sub-expressions within livelit GUIs called splices, which can be filled by the user with arbitrary
symbolic code of a specified type or themselves be livelits. For example, the table in Fig 1. is a livelit
containing a footer that can be populated with splices that operate on the associated columns’
contents. This allows for a user to quickly visualize the distribution a particular variable may take
in a dataset. The interface provides a form of gradual technical sophistication where a novice user
can just see the visualization, an intermediate user can expand into the splice definition to alter
configuration parameters or switch to a different visualization, and an expert user could define
new splices or livelits and access the full expressive capabilities of the language. The designer of
the table livelit need not anticipate all of these potential uses due to the magic of compositionality!
Compositionality also allows us to extend into data-driven documents—Fig. 1 illustrates transclusions
[Nelson 1981] of real data into rich explanatory text removing the possibility of data getting out of
sync.

Hazel is built atop a typed functional language that integrates the PL community’s state-of-the-
art understanding of composability in computing using a small number of orthogonal logical
data primitives, namely products, sums, and functions (with |> serving as pipelining, i.e. reverse
function application). This simplicity and connection to basic mathematics means that scientists
will not need to learn as many new ideas, like object-oriented programming, to fully understand
the computational model (it is, essentially, a refinement of the Excel formula language!) Modern
compilation techniques are able to fuse, parallelize, and distribute pure functional code much
more easily than imperative code [Chin 1992]. This could build on ideas from the Ark project
[Holcomb et al. 2023] which enables the definition of dataflow pipelines to streamline the ingestion,
transformation, and publication of climate analyses by explicitly breaking out pipelines into pure
computations and data inputs. The system remains accessible to non-expert users by allowing for
analyses to be performed in external systems.

Climate science is inherently a multidisciplinary international collaboration. To support this, we
believe there needs to be a large-scale collaborative compute engine—essentially, a computational
Wikipedia—that allows all stakeholders to operate in a common environment without strict siloing
of capability or information, nor unnecessary friction at interfaces. Adding multi-user editor
support to Hazel would allow for different stakeholders (perhaps also including aligned AI agents
partnered with human stakeholders) to collaborate on analyzing and cleaning up data, making
and comparing policy proposals, and improving basic methods in real-time. Direct collaboration
using real data speeds up the rate and minimizes the risk of miscommunication leading to better
outcomes. A shared environment also creates opportunities for spontaneous collaboration on
innovative solutions that are otherwise impossible. For example, the figure shows a journalist
making use of modifiable parameters in a report being collaboratively edited by a scientist. Critical
to ensuring liveness in the presence of collaboration is resilience to errors, which as mentioned
above is a hallmark of the Hazel environment: one collaborator leaving a syntax or type error
somewhere in the Wikipedia-sized “planetary program” will not break everyone’s build.
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The proposed talk will demonstrate some of Hazel’s current capabilities in this direction and
discuss several future research directions. We will conclude with a call to action for how the
community can work towards pursuing this vision and other avenues for future research and
collaboration.
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